{"title":"Multisource data acquisition based on single-chip microcomputer and sensor technology","authors":"Yahui Huang, Daozhong Lei","doi":"10.1515/comp-2022-0261","DOIUrl":null,"url":null,"abstract":"Abstract Today, data and information are flooded every day. Data are a reliable basis for scientific research. Their function is not only to clearly show real problems in various fields, but also to guide people to find the key factors that cause problems. The emergence of big data responds to this era of information explosion, and it is precisely by virtue of the accumulation of quantity that it presents the rules more clearly. No matter political, economic, cultural, and other fields are closely related to data. The application of microcontroller and sensor technology can help explore new branches of multisource data. However, the collection and analysis of multisource data only stays in the aspects of computer and communication technology. In view of the earlier problems, this article carried out scientific data collection and analysis of multisource data based on single-chip microcomputer and sensor technology. The research results showed that based on two algorithms, random early detection and weighted fair queuing, the analysis algorithm according to the Genetic Algorithm had a higher successful conversion rate. The power consumption of a node with better antenna performance was 9–10% lower than that of a node with poor antenna performance, which provided a basis for multisource data collection and analysis.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/comp-2022-0261","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Today, data and information are flooded every day. Data are a reliable basis for scientific research. Their function is not only to clearly show real problems in various fields, but also to guide people to find the key factors that cause problems. The emergence of big data responds to this era of information explosion, and it is precisely by virtue of the accumulation of quantity that it presents the rules more clearly. No matter political, economic, cultural, and other fields are closely related to data. The application of microcontroller and sensor technology can help explore new branches of multisource data. However, the collection and analysis of multisource data only stays in the aspects of computer and communication technology. In view of the earlier problems, this article carried out scientific data collection and analysis of multisource data based on single-chip microcomputer and sensor technology. The research results showed that based on two algorithms, random early detection and weighted fair queuing, the analysis algorithm according to the Genetic Algorithm had a higher successful conversion rate. The power consumption of a node with better antenna performance was 9–10% lower than that of a node with poor antenna performance, which provided a basis for multisource data collection and analysis.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.