Accelerating deep reinforcement learning via knowledge-guided policy network

IF 2 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Yuanqiang Yu, Peng Zhang, Kai Zhao, Yan Zheng, Jianye Hao
{"title":"Accelerating deep reinforcement learning via knowledge-guided policy network","authors":"Yuanqiang Yu,&nbsp;Peng Zhang,&nbsp;Kai Zhao,&nbsp;Yan Zheng,&nbsp;Jianye Hao","doi":"10.1007/s10458-023-09600-1","DOIUrl":null,"url":null,"abstract":"<div><p>Deep reinforcement learning has contributed to dramatic advances in many tasks, such as playing games, controlling robots, and navigating complex environments. However, it requires many interactions with the environment. This is different from the human learning process since humans can use prior knowledge, which can significantly speed up the learning process as it avoids unnecessary exploration. Previous works integrating knowledge in RL did not model uncertainty in human cognition, which reduces the reliability of knowledge. In this paper, we propose a knowledge-guided policy network, a novel framework that combines suboptimal human knowledge with reinforcement learning. Our framework consists of a fuzzy rule controller representing human knowledge and a refined module to fine-tune suboptimal prior knowledge. The proposed framework is end-to-end and can be combined with existing reinforcement learning algorithms such as PPO, AC, and SAC. We conduct experiments on both discrete and continuous control tasks. The empirical results show that our approach, which combines suboptimal human knowledge and RL, significantly improves the learning efficiency of basic RL algorithms, even with very low-performance human prior knowledge. Additional experiments are conducted on the number of fuzzy rules and the interpretability of the policy, which make our proposed framework more complete and reasonable. The code for this research is released under the project page of https://github.com/yuyuanq/reinforcement-learning-using-knowledge-controller.</p></div>","PeriodicalId":55586,"journal":{"name":"Autonomous Agents and Multi-Agent Systems","volume":"37 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Agents and Multi-Agent Systems","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10458-023-09600-1","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Deep reinforcement learning has contributed to dramatic advances in many tasks, such as playing games, controlling robots, and navigating complex environments. However, it requires many interactions with the environment. This is different from the human learning process since humans can use prior knowledge, which can significantly speed up the learning process as it avoids unnecessary exploration. Previous works integrating knowledge in RL did not model uncertainty in human cognition, which reduces the reliability of knowledge. In this paper, we propose a knowledge-guided policy network, a novel framework that combines suboptimal human knowledge with reinforcement learning. Our framework consists of a fuzzy rule controller representing human knowledge and a refined module to fine-tune suboptimal prior knowledge. The proposed framework is end-to-end and can be combined with existing reinforcement learning algorithms such as PPO, AC, and SAC. We conduct experiments on both discrete and continuous control tasks. The empirical results show that our approach, which combines suboptimal human knowledge and RL, significantly improves the learning efficiency of basic RL algorithms, even with very low-performance human prior knowledge. Additional experiments are conducted on the number of fuzzy rules and the interpretability of the policy, which make our proposed framework more complete and reasonable. The code for this research is released under the project page of https://github.com/yuyuanq/reinforcement-learning-using-knowledge-controller.

Abstract Image

通过知识引导的策略网络加速深度强化学习
深度强化学习为许多任务的巨大进步做出了贡献,如玩游戏、控制机器人和在复杂环境中导航。然而,它需要与环境进行多次交互。这与人类的学习过程不同,因为人类可以使用先验知识,这可以显著加快学习过程,避免不必要的探索。以前在RL中集成知识的工作没有对人类认知中的不确定性进行建模,这降低了知识的可靠性。在本文中,我们提出了一个知识导向的政策网络,这是一个将次优人类知识与强化学习相结合的新框架。我们的框架由一个表示人类知识的模糊规则控制器和一个微调次优先验知识的精化模块组成。所提出的框架是端到端的,可以与现有的强化学习算法(如PPO、AC和SAC)相结合。我们对离散和连续控制任务进行了实验。实证结果表明,我们的方法结合了次优人类知识和RL,显著提高了基本RL算法的学习效率,即使在具有非常低性能的人类先验知识的情况下也是如此。对模糊规则的数量和策略的可解释性进行了额外的实验,使我们提出的框架更加完整和合理。这项研究的代码发布在https://github.com/yuyuanq/reinforcement-learning-using-knowledge-controller.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Autonomous Agents and Multi-Agent Systems
Autonomous Agents and Multi-Agent Systems 工程技术-计算机:人工智能
CiteScore
6.00
自引率
5.30%
发文量
48
审稿时长
>12 weeks
期刊介绍: This is the official journal of the International Foundation for Autonomous Agents and Multi-Agent Systems. It provides a leading forum for disseminating significant original research results in the foundations, theory, development, analysis, and applications of autonomous agents and multi-agent systems. Coverage in Autonomous Agents and Multi-Agent Systems includes, but is not limited to: Agent decision-making architectures and their evaluation, including: cognitive models; knowledge representation; logics for agency; ontological reasoning; planning (single and multi-agent); reasoning (single and multi-agent) Cooperation and teamwork, including: distributed problem solving; human-robot/agent interaction; multi-user/multi-virtual-agent interaction; coalition formation; coordination Agent communication languages, including: their semantics, pragmatics, and implementation; agent communication protocols and conversations; agent commitments; speech act theory Ontologies for agent systems, agents and the semantic web, agents and semantic web services, Grid-based systems, and service-oriented computing Agent societies and societal issues, including: artificial social systems; environments, organizations and institutions; ethical and legal issues; privacy, safety and security; trust, reliability and reputation Agent-based system development, including: agent development techniques, tools and environments; agent programming languages; agent specification or validation languages Agent-based simulation, including: emergent behavior; participatory simulation; simulation techniques, tools and environments; social simulation Agreement technologies, including: argumentation; collective decision making; judgment aggregation and belief merging; negotiation; norms Economic paradigms, including: auction and mechanism design; bargaining and negotiation; economically-motivated agents; game theory (cooperative and non-cooperative); social choice and voting Learning agents, including: computational architectures for learning agents; evolution, adaptation; multi-agent learning. Robotic agents, including: integrated perception, cognition, and action; cognitive robotics; robot planning (including action and motion planning); multi-robot systems. Virtual agents, including: agents in games and virtual environments; companion and coaching agents; modeling personality, emotions; multimodal interaction; verbal and non-verbal expressiveness Significant, novel applications of agent technology Comprehensive reviews and authoritative tutorials of research and practice in agent systems Comprehensive and authoritative reviews of books dealing with agents and multi-agent systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信