{"title":"Learning to Generate Video Game Maps Using Markov Models","authors":"Sam Snodgrass, Santiago Ontañón","doi":"10.1109/TCIAIG.2016.2623560","DOIUrl":null,"url":null,"abstract":"Procedural content generation has become a popular research topic in recent years. However, most content generation systems are specialized to a single game. We are interested in methods that can generate content for a wide variety of games without a game-specific algorithm design. Statistical approaches are a promising avenue for such generators and, more specifically, map generators. In this paper, we explore Markov models as a means of modeling and generating content for multiple domains. We apply our Markov models to Super Mario Bros., Loderunner , and Kid Icarus in order to determine how well our models perform in terms of the playability of the content generated, the expressive ranges of the models, and the effects of training data on those expressive ranges.","PeriodicalId":49192,"journal":{"name":"IEEE Transactions on Computational Intelligence and AI in Games","volume":"9 1","pages":"410-422"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TCIAIG.2016.2623560","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Intelligence and AI in Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCIAIG.2016.2623560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 63
Abstract
Procedural content generation has become a popular research topic in recent years. However, most content generation systems are specialized to a single game. We are interested in methods that can generate content for a wide variety of games without a game-specific algorithm design. Statistical approaches are a promising avenue for such generators and, more specifically, map generators. In this paper, we explore Markov models as a means of modeling and generating content for multiple domains. We apply our Markov models to Super Mario Bros., Loderunner , and Kid Icarus in order to determine how well our models perform in terms of the playability of the content generated, the expressive ranges of the models, and the effects of training data on those expressive ranges.
期刊介绍:
Cessation. The IEEE Transactions on Computational Intelligence and AI in Games (T-CIAIG) publishes archival journal quality original papers in computational intelligence and related areas in artificial intelligence applied to games, including but not limited to videogames, mathematical games, human–computer interactions in games, and games involving physical objects. Emphasis is placed on the use of these methods to improve performance in and understanding of the dynamics of games, as well as gaining insight into the properties of the methods as applied to games. It also includes using games as a platform for building intelligent embedded agents for the real world. Papers connecting games to all areas of computational intelligence and traditional AI are considered.