L. Valladares, Valentina Nino, Kenneth Martínez, D. Sobek, David Claudio, S. Moyce
{"title":"Optimizing patient flow, capacity, and performance of COVID-19 vaccination clinics","authors":"L. Valladares, Valentina Nino, Kenneth Martínez, D. Sobek, David Claudio, S. Moyce","doi":"10.1080/24725579.2022.2066740","DOIUrl":null,"url":null,"abstract":"Abstract Mass vaccination plays an important role in increasing immunization against COVID-19 and decreasing morbidity. Drive-through and traditional walk-through centers have been set up in most cities in the United States and other countries to vaccinate large numbers of people in a short period of time. This article focuses on a pair of mass vaccination clinics conducted on a mid-sized, public university campus. Applying tools from Industrial Engineering, including time study, flow charts, and Queuing Theory, the team identified improvements that resulted in a 40% reduction in the duration of the second clinic while vaccinating almost the same number of patients with no increases in overall staffing. The work resulted in a model for designing mass vaccination clinics in the future and demonstrates that engineers have the ability to support healthcare personnel to increase the performance of the vaccination centers. The inclusion of engineering in the planning and execution of these vaccination clinics can help maximize clinic capacity, reduce the staff and resources needed, and reduce the patients’ waiting time.","PeriodicalId":37744,"journal":{"name":"IISE Transactions on Healthcare Systems Engineering","volume":"12 1","pages":"275 - 287"},"PeriodicalIF":1.5000,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IISE Transactions on Healthcare Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24725579.2022.2066740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Mass vaccination plays an important role in increasing immunization against COVID-19 and decreasing morbidity. Drive-through and traditional walk-through centers have been set up in most cities in the United States and other countries to vaccinate large numbers of people in a short period of time. This article focuses on a pair of mass vaccination clinics conducted on a mid-sized, public university campus. Applying tools from Industrial Engineering, including time study, flow charts, and Queuing Theory, the team identified improvements that resulted in a 40% reduction in the duration of the second clinic while vaccinating almost the same number of patients with no increases in overall staffing. The work resulted in a model for designing mass vaccination clinics in the future and demonstrates that engineers have the ability to support healthcare personnel to increase the performance of the vaccination centers. The inclusion of engineering in the planning and execution of these vaccination clinics can help maximize clinic capacity, reduce the staff and resources needed, and reduce the patients’ waiting time.
期刊介绍:
IISE Transactions on Healthcare Systems Engineering aims to foster the healthcare systems community by publishing high quality papers that have a strong methodological focus and direct applicability to healthcare systems. Published quarterly, the journal supports research that explores: · Healthcare Operations Management · Medical Decision Making · Socio-Technical Systems Analysis related to healthcare · Quality Engineering · Healthcare Informatics · Healthcare Policy We are looking forward to accepting submissions that document the development and use of industrial and systems engineering tools and techniques including: · Healthcare operations research · Healthcare statistics · Healthcare information systems · Healthcare work measurement · Human factors/ergonomics applied to healthcare systems Research that explores the integration of these tools and techniques with those from other engineering and medical disciplines are also featured. We encourage the submission of clinical notes, or practice notes, to show the impact of contributions that will be published. We also encourage authors to collect an impact statement from their clinical partners to show the impact of research in the clinical practices.