Corrigendum to “Smarandache Ruled Surfaces according to Frenet-Serret Frame of a Regular Curve in E

Q3 Mathematics
Soukaina Ouarab
{"title":"Corrigendum to “Smarandache Ruled Surfaces according to Frenet-Serret Frame of a Regular Curve in <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <msup>\n <mrow>\n <mi>E</mi>\n </mrow>\n ","authors":"Soukaina Ouarab","doi":"10.1155/2022/9849574","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce original definitions of Smarandache ruled surfaces according to Frenet-Serret frame of a curve in \n \n \n \n E\n \n \n 3\n \n \n .\n \n It concerns TN-Smarandache ruled surface, TB-Smarandache ruled surface, and NB-Smarandache ruled surface. We investigate theorems that give necessary and sufficient conditions for those special ruled surfaces to be developable and minimal. Furthermore, we present examples with illustrations.","PeriodicalId":7061,"journal":{"name":"Abstract and Applied Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/9849574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce original definitions of Smarandache ruled surfaces according to Frenet-Serret frame of a curve in E 3 . It concerns TN-Smarandache ruled surface, TB-Smarandache ruled surface, and NB-Smarandache ruled surface. We investigate theorems that give necessary and sufficient conditions for those special ruled surfaces to be developable and minimal. Furthermore, we present examples with illustrations.
“根据正则曲线的Frenet-Serret框架的Smarandache直纹曲面”的勘误表
本文根据E - 3中曲线的Frenet-Serret坐标系,给出了Smarandache直条曲面的原始定义。涉及TN-Smarandache直纹曲面、TB-Smarandache直纹曲面和NB-Smarandache直纹曲面。研究了一类特殊直纹曲面可展极小的充要条件。此外,我们还提供了带有插图的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
36
审稿时长
3.5 months
期刊介绍: Abstract and Applied Analysis is a mathematical journal devoted exclusively to the publication of high-quality research papers in the fields of abstract and applied analysis. Emphasis is placed on important developments in classical analysis, linear and nonlinear functional analysis, ordinary and partial differential equations, optimization theory, and control theory. Abstract and Applied Analysis supports the publication of original material involving the complete solution of significant problems in the above disciplines. Abstract and Applied Analysis also encourages the publication of timely and thorough survey articles on current trends in the theory and applications of analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信