A. Yudhana, Andreyan Dwi Cahyo, L. Y. Sabila, Arsyad Cahya Subrata, I. Mufandi
{"title":"Spatial distribution of soil nutrient content for sustainable rice agriculture using geographic information system and Naïve Bayes classifier","authors":"A. Yudhana, Andreyan Dwi Cahyo, L. Y. Sabila, Arsyad Cahya Subrata, I. Mufandi","doi":"10.2478/ijssis-2023-0001","DOIUrl":null,"url":null,"abstract":"Abstract This study aims to assist farmers in monitoring soil nutrients, especially phosphorus. To measure the phosphorus content of paddy soil, the TCS3200 converter, as an intelligent sensor, was applied. The geographical information system (GIS) was also involved in this research to map the phosphorus content. In addition, the Naïve Bayes method was applied to classify lowland soil phosphorus status. The result of this study indicated that the Naïve Bayes algorithm could classify lowland soil phosphorus status with a probability of 0.34 for moderate phosphorus conditions and 0.66 for high phosphorus conditions. The sample testing results showed that the error rate was 3% and the success rate was 97%. Testing with a phosphorus-measuring instrument can be carried out by mapping the soil phosphorus status with the ArcGIS software, whereby seven points of medium-phosphorus-status paddy soil and 13 locations of high-phosphorus-status soil samples were determined. This research thus successfully mapped the soil phosphorus.","PeriodicalId":45623,"journal":{"name":"International Journal on Smart Sensing and Intelligent Systems","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Smart Sensing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ijssis-2023-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract This study aims to assist farmers in monitoring soil nutrients, especially phosphorus. To measure the phosphorus content of paddy soil, the TCS3200 converter, as an intelligent sensor, was applied. The geographical information system (GIS) was also involved in this research to map the phosphorus content. In addition, the Naïve Bayes method was applied to classify lowland soil phosphorus status. The result of this study indicated that the Naïve Bayes algorithm could classify lowland soil phosphorus status with a probability of 0.34 for moderate phosphorus conditions and 0.66 for high phosphorus conditions. The sample testing results showed that the error rate was 3% and the success rate was 97%. Testing with a phosphorus-measuring instrument can be carried out by mapping the soil phosphorus status with the ArcGIS software, whereby seven points of medium-phosphorus-status paddy soil and 13 locations of high-phosphorus-status soil samples were determined. This research thus successfully mapped the soil phosphorus.
期刊介绍:
nternational Journal on Smart Sensing and Intelligent Systems (S2IS) is a rapid and high-quality international forum wherein academics, researchers and practitioners may publish their high-quality, original, and state-of-the-art papers describing theoretical aspects, system architectures, analysis and design techniques, and implementation experiences in intelligent sensing technologies. The journal publishes articles reporting substantive results on a wide range of smart sensing approaches applied to variety of domain problems, including but not limited to: Ambient Intelligence and Smart Environment Analysis, Evaluation, and Test of Smart Sensors Intelligent Management of Sensors Fundamentals of Smart Sensing Principles and Mechanisms Materials and its Applications for Smart Sensors Smart Sensing Applications, Hardware, Software, Systems, and Technologies Smart Sensors in Multidisciplinary Domains and Problems Smart Sensors in Science and Engineering Smart Sensors in Social Science and Humanity