{"title":"Fusion of spatiotemporal and thematic features of textual data for animal disease surveillance","authors":"Sarah Valentin , Renaud Lancelot , Mathieu Roche","doi":"10.1016/j.inpa.2022.03.004","DOIUrl":null,"url":null,"abstract":"<div><p>Several internet-based surveillance systems have been created to monitor the web for animal health surveillance. These systems collect a large amount of news dealing with outbreaks related to animal diseases. Automatically identifying news articles that describe the same outbreak event is a key step to quickly detect relevant epidemiological information while alleviating manual curation of news content. This paper addresses the task of retrieving news articles that are related in epidemiological terms. We tackle this issue using text mining and feature fusion methods. The main objective of this paper is to identify a textual representation in which two articles that share the same epidemiological content are close. We compared two types of representations (i.e., features) to represent the documents: (i) morphosyntactic features (i.e., selection and transformation of all terms from the news, based on classical textual processing steps) and (ii) lexicosemantic features (i.e., selection, transformation and fusion of epidemiological terms including diseases, hosts, locations and dates). We compared two types of term weighing (i.e., Boolean and TF-IDF) for both representations. To combine and transform lexicosemantic features, we compared two data fusion techniques (i.e., early fusion and late fusion) and the effect of features generalisation, while evaluating the relative importance of each type of feature. We conducted our analysis using a corpus composed of a subset of news articles in English related to animal disease outbreaks. Our results showed that the combination of relevant lexicosemantic (epidemiological) features using fusion methods improves classical morphosyntactic representation in the context of disease-related news retrieval. The lexicosemantic representation based on TF-IDF and feature generalisation (F-measure = 0.92, r-precision = 0.58) outperformed the morphosyntactic representation (F-measure = 0.89, r-precision = 0.45), while reducing the features space. Converting the features into lower granular features (i.e., generalisation) contributed to improving the results of the lexicosemantic representation. Our results showed no difference between the early and late fusion approaches. Temporal features performed poorly on their own. Conversely, spatial features were the most discriminative features, highlighting the need for robust methods for spatial entity extraction, disambiguation and representation in internet-based surveillance systems.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"10 3","pages":"Pages 347-360"},"PeriodicalIF":7.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317322000312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Several internet-based surveillance systems have been created to monitor the web for animal health surveillance. These systems collect a large amount of news dealing with outbreaks related to animal diseases. Automatically identifying news articles that describe the same outbreak event is a key step to quickly detect relevant epidemiological information while alleviating manual curation of news content. This paper addresses the task of retrieving news articles that are related in epidemiological terms. We tackle this issue using text mining and feature fusion methods. The main objective of this paper is to identify a textual representation in which two articles that share the same epidemiological content are close. We compared two types of representations (i.e., features) to represent the documents: (i) morphosyntactic features (i.e., selection and transformation of all terms from the news, based on classical textual processing steps) and (ii) lexicosemantic features (i.e., selection, transformation and fusion of epidemiological terms including diseases, hosts, locations and dates). We compared two types of term weighing (i.e., Boolean and TF-IDF) for both representations. To combine and transform lexicosemantic features, we compared two data fusion techniques (i.e., early fusion and late fusion) and the effect of features generalisation, while evaluating the relative importance of each type of feature. We conducted our analysis using a corpus composed of a subset of news articles in English related to animal disease outbreaks. Our results showed that the combination of relevant lexicosemantic (epidemiological) features using fusion methods improves classical morphosyntactic representation in the context of disease-related news retrieval. The lexicosemantic representation based on TF-IDF and feature generalisation (F-measure = 0.92, r-precision = 0.58) outperformed the morphosyntactic representation (F-measure = 0.89, r-precision = 0.45), while reducing the features space. Converting the features into lower granular features (i.e., generalisation) contributed to improving the results of the lexicosemantic representation. Our results showed no difference between the early and late fusion approaches. Temporal features performed poorly on their own. Conversely, spatial features were the most discriminative features, highlighting the need for robust methods for spatial entity extraction, disambiguation and representation in internet-based surveillance systems.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining