{"title":"Asymptotic Behavior of Solutions to a Nonlinear Swelling Soil System with Time Delay and Variable Exponents","authors":"Mohammad M. Kafini, M. Al-Gharabli, A. Al‐Mahdi","doi":"10.3390/mca28050094","DOIUrl":null,"url":null,"abstract":"In this research work, we investigate the asymptotic behavior of a nonlinear swelling (also called expansive) soil system with a time delay and nonlinear damping of variable exponents. We should note here that swelling soils contain clay minerals that absorb water, which may lead to increases in pressure. In architectural and civil engineering, swelling soils are considered sources of problems and harm. The presence of the delay is used to create more realistic models since many processes depend on past history, and the delays are frequently added by sensors, actuators, and field networks that travel through feedback loops. The appearance of variable exponents in the delay and damping terms in this system allows for a more flexible and accurate modeling of this physical phenomenon. This can lead to more realistic and precise descriptions of the behavior of fluids in different media. In fact, with the advancements of science and technology, many physical and engineering models require more sophisticated mathematical tools to study and understand. The Lebesgue and Sobolev spaces with variable exponents proved to be efficient tools for studying such problems. By constructing a suitable Lyapunov functional, we establish exponential and polynomial decay results. We noticed that the energy decay of the system depends on the value of the variable exponent. These results improve on some existing results in the literature.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28050094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this research work, we investigate the asymptotic behavior of a nonlinear swelling (also called expansive) soil system with a time delay and nonlinear damping of variable exponents. We should note here that swelling soils contain clay minerals that absorb water, which may lead to increases in pressure. In architectural and civil engineering, swelling soils are considered sources of problems and harm. The presence of the delay is used to create more realistic models since many processes depend on past history, and the delays are frequently added by sensors, actuators, and field networks that travel through feedback loops. The appearance of variable exponents in the delay and damping terms in this system allows for a more flexible and accurate modeling of this physical phenomenon. This can lead to more realistic and precise descriptions of the behavior of fluids in different media. In fact, with the advancements of science and technology, many physical and engineering models require more sophisticated mathematical tools to study and understand. The Lebesgue and Sobolev spaces with variable exponents proved to be efficient tools for studying such problems. By constructing a suitable Lyapunov functional, we establish exponential and polynomial decay results. We noticed that the energy decay of the system depends on the value of the variable exponent. These results improve on some existing results in the literature.
期刊介绍:
Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.