Sovereign Rating Analysis through the Dominance-Based Rough Set Approach

IF 1.8 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ayrton Benedito Gaia do Couto, L. Gomes
{"title":"Sovereign Rating Analysis through the Dominance-Based Rough Set Approach","authors":"Ayrton Benedito Gaia do Couto, L. Gomes","doi":"10.2478/fcds-2020-0001","DOIUrl":null,"url":null,"abstract":"Abstract The classifications of risk made by international rating agencies aim at guiding investors when it comes to the capacity and disposition of the evaluated countries to honor their public debt commitments. In this study, the analysis of economic variables of sovereign rating, in a context of vagueness and uncertainty, leads the inference of patterns (multi-criteria rules) by following the Dominance-based Rough Set Approach (DRSA). The discovery of patterns in data may be useful for subsidizing foreign investment decisions in countries; and this knowledge base may be used in rule-based expert systems (learning from training examples).The present study seeks to complement the analysis produced by an international credit rating agency, Standard & Poor’s (S&P), for the year 2018.","PeriodicalId":42909,"journal":{"name":"Foundations of Computing and Decision Sciences","volume":"45 1","pages":"16 - 3"},"PeriodicalIF":1.8000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computing and Decision Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/fcds-2020-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The classifications of risk made by international rating agencies aim at guiding investors when it comes to the capacity and disposition of the evaluated countries to honor their public debt commitments. In this study, the analysis of economic variables of sovereign rating, in a context of vagueness and uncertainty, leads the inference of patterns (multi-criteria rules) by following the Dominance-based Rough Set Approach (DRSA). The discovery of patterns in data may be useful for subsidizing foreign investment decisions in countries; and this knowledge base may be used in rule-based expert systems (learning from training examples).The present study seeks to complement the analysis produced by an international credit rating agency, Standard & Poor’s (S&P), for the year 2018.
基于支配性粗糙集方法的主权评级分析
国际评级机构对风险进行分类的目的是在被评估国家履行其公共债务承诺的能力和处置方面指导投资者。在本研究中,在模糊和不确定的背景下,对主权评级的经济变量进行分析,通过遵循基于优势的粗糙集方法(DRSA)来推断模式(多标准规则)。发现数据中的模式可能有助于补贴各国的外国投资决策;该知识库可用于基于规则的专家系统(从训练示例中学习)。本研究旨在补充国际信用评级机构标准普尔(S&P)对2018年的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Foundations of Computing and Decision Sciences
Foundations of Computing and Decision Sciences COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
2.20
自引率
9.10%
发文量
16
审稿时长
29 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信