A. Khalil, A. El-Khatib, Rasha M. Hamouda, Sonia M Elshabrawy, S. Kandil
{"title":"Enhancing of teeth remineralization by electric field aid (in vitro study)","authors":"A. Khalil, A. El-Khatib, Rasha M. Hamouda, Sonia M Elshabrawy, S. Kandil","doi":"10.1680/jbibn.22.00042","DOIUrl":null,"url":null,"abstract":"One of the major challenges in teeth re-mineralization is the slow rate of mineralization. In this paper, we developed electric field-aided mineralization system for rapidly regenerating teeth-like structure rapidly. The efficacy of application of electric field combined with Nano-chitosan gel, casein phosphopeptide amorphous calcium phosphate gel and their mixture was investigated as re-mineralizing accelerator for artificially demineralized teeth. Teeth samples have been demineralized by using ethylenediaminetetraacetic acid and subsequently subjected to each gel alone and combined with electric field (20 mA- 5 min). The structural analyses of teeth samples were examined by using scanning electron microscope and X-ray diffraction patterns and its hardness was obtained by Vickers micro-hardness test. The results revealed that the addition of chitosan to casein phosphopeptide amorphous calcium phosphate enhanced the re-mineralization of the tooth structure rather than each one individually. Furthermore, the application of electric field has enhanced teeth hardness and showed highest rate of re-mineralization. In conclusion, the proposed technique could be safely used to reduce the consuming time taken in re-mineralization and efficiently it may be used to increase tooth quality. It is suggested to study other biophysical parameters of using electric fields for in vivo applications.","PeriodicalId":48847,"journal":{"name":"Bioinspired Biomimetic and Nanobiomaterials","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspired Biomimetic and Nanobiomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jbibn.22.00042","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
One of the major challenges in teeth re-mineralization is the slow rate of mineralization. In this paper, we developed electric field-aided mineralization system for rapidly regenerating teeth-like structure rapidly. The efficacy of application of electric field combined with Nano-chitosan gel, casein phosphopeptide amorphous calcium phosphate gel and their mixture was investigated as re-mineralizing accelerator for artificially demineralized teeth. Teeth samples have been demineralized by using ethylenediaminetetraacetic acid and subsequently subjected to each gel alone and combined with electric field (20 mA- 5 min). The structural analyses of teeth samples were examined by using scanning electron microscope and X-ray diffraction patterns and its hardness was obtained by Vickers micro-hardness test. The results revealed that the addition of chitosan to casein phosphopeptide amorphous calcium phosphate enhanced the re-mineralization of the tooth structure rather than each one individually. Furthermore, the application of electric field has enhanced teeth hardness and showed highest rate of re-mineralization. In conclusion, the proposed technique could be safely used to reduce the consuming time taken in re-mineralization and efficiently it may be used to increase tooth quality. It is suggested to study other biophysical parameters of using electric fields for in vivo applications.
期刊介绍:
Bioinspired, biomimetic and nanobiomaterials are emerging as the most promising area of research within the area of biological materials science and engineering. The technological significance of this area is immense for applications as diverse as tissue engineering and drug delivery biosystems to biomimicked sensors and optical devices.
Bioinspired, Biomimetic and Nanobiomaterials provides a unique scholarly forum for discussion and reporting of structure sensitive functional properties of nature inspired materials.