{"title":"Non-reversible guided Metropolis kernel","authors":"K. Kamatani, Xiaolin Song","doi":"10.1017/jpr.2022.109","DOIUrl":null,"url":null,"abstract":"Abstract We construct a class of non-reversible Metropolis kernels as a multivariate extension of the guided-walk kernel proposed by Gustafson (Statist. Comput. 8, 1998). The main idea of our method is to introduce a projection that maps a state space to a totally ordered group. By using Haar measure, we construct a novel Markov kernel termed the Haar mixture kernel, which is of interest in its own right. This is achieved by inducing a topological structure to the totally ordered group. Our proposed method, the \n$\\Delta$\n -guided Metropolis–Haar kernel, is constructed by using the Haar mixture kernel as a proposal kernel. The proposed non-reversible kernel is at least 10 times better than the random-walk Metropolis kernel and Hamiltonian Monte Carlo kernel for the logistic regression and a discretely observed stochastic process in terms of effective sample size per second.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jpr.2022.109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract We construct a class of non-reversible Metropolis kernels as a multivariate extension of the guided-walk kernel proposed by Gustafson (Statist. Comput. 8, 1998). The main idea of our method is to introduce a projection that maps a state space to a totally ordered group. By using Haar measure, we construct a novel Markov kernel termed the Haar mixture kernel, which is of interest in its own right. This is achieved by inducing a topological structure to the totally ordered group. Our proposed method, the
$\Delta$
-guided Metropolis–Haar kernel, is constructed by using the Haar mixture kernel as a proposal kernel. The proposed non-reversible kernel is at least 10 times better than the random-walk Metropolis kernel and Hamiltonian Monte Carlo kernel for the logistic regression and a discretely observed stochastic process in terms of effective sample size per second.