S. Mousavi, S. Hashemi, Sara Jahandideh, S. Baseri, M. Zarei, Sara Azadi
{"title":"Modification of Phenol Novolac Epoxy Resin and Unsaturated Polyester Using Sasobit and Silica Nanoparticles","authors":"S. Mousavi, S. Hashemi, Sara Jahandideh, S. Baseri, M. Zarei, Sara Azadi","doi":"10.1177/204124791700800303","DOIUrl":null,"url":null,"abstract":"Nanocomposites containing phenol novolac epoxy resin (PNER) were modified by unsaturated polyester resin (UPR) and then reinforced using sasobit and silica nanoparticles at different filler loadings via a multi-step manufacturing procedure. Afterward, effect of sasobit and silica loadings either on mechanical and thermal properties or on morphology of nanocomposites were examined. Results showed that increase in silica nanoparticles loading can improve both thermal and mechanical properties, but increase in silica loading more than 3 wt% can lead to decrease in the mechanical properties. In this case, addition of sasobit along with silica not only can improve the mechanical and thermal properties but also it can lead to improve in dispersion quality and morphology of nanocomposites. Eventually, with affordable and environmentally friendly materials such as sasobit, either production procedure or the overall quality and properties of nanocomposites can be improved.","PeriodicalId":20353,"journal":{"name":"Polymers from Renewable Resources","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/204124791700800303","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers from Renewable Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/204124791700800303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 30
Abstract
Nanocomposites containing phenol novolac epoxy resin (PNER) were modified by unsaturated polyester resin (UPR) and then reinforced using sasobit and silica nanoparticles at different filler loadings via a multi-step manufacturing procedure. Afterward, effect of sasobit and silica loadings either on mechanical and thermal properties or on morphology of nanocomposites were examined. Results showed that increase in silica nanoparticles loading can improve both thermal and mechanical properties, but increase in silica loading more than 3 wt% can lead to decrease in the mechanical properties. In this case, addition of sasobit along with silica not only can improve the mechanical and thermal properties but also it can lead to improve in dispersion quality and morphology of nanocomposites. Eventually, with affordable and environmentally friendly materials such as sasobit, either production procedure or the overall quality and properties of nanocomposites can be improved.
期刊介绍:
Polymers from Renewable Resources, launched in 2010, publishes leading peer reviewed research that is focused on the development of renewable polymers and their application in the production of industrial, consumer, and medical products. The progressive decline of fossil resources, together with the ongoing increases in oil prices, has initiated an increase in the search for alternatives based on renewable resources for the production of energy. The prevalence of petroleum and carbon based chemistry for the production of organic chemical goods has generated a variety of initiatives aimed at replacing fossil sources with renewable counterparts. In particular, major efforts are being conducted in polymer science and technology to prepare macromolecular materials based on renewable resources. Also gaining momentum is the utilisation of vegetable biomass either by the separation of its components and their development or after suitable chemical modification. This journal is a valuable addition to academic, research and industrial libraries, research institutions dealing with the use of natural resources and materials science and industrial laboratories concerned with polymer science.