A comparative study on the effects of technology nodes and logic styles for low power high speed VLSI applications

Q4 Engineering
I. Hussain, S. Chaudhury
{"title":"A comparative study on the effects of technology nodes and logic styles for low power high speed VLSI applications","authors":"I. Hussain, S. Chaudhury","doi":"10.1504/ijnp.2020.106004","DOIUrl":null,"url":null,"abstract":"Carbon nanotubes (CNT) field-effect transistor (CNTFET) could be a possible alternative to CMOS technology for future VLSI applications. In this work, a comparative study has been carried out on the effects of technology nodes and logic styles on power dissipation, delay, leakages, etc. The technology nodes that are considered here are 90 nm and 32 nm MOSFET technology, and 32 nm CNTFET technology. The logic families considered here are the conventional complementary metal-oxide-semiconductor (CMOS), complementary pass transistor logic (CPL) and transmission gate (TG). The digital circuits considered are NAND, NOR, XOR and MUX gates. HSPICE simulations have been carried out and observed that at 32 nm CNTFET technology, the least power, worst-case delay and least PDP are found as 15.5 nW, 3.11 ps and 0.048 aJ, respectively. It is witnessed that CNTFET-based logics are superior compared to other logic families at different technology nodes.","PeriodicalId":14016,"journal":{"name":"International Journal of Nanoparticles","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijnp.2020.106004","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanoparticles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijnp.2020.106004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

Abstract

Carbon nanotubes (CNT) field-effect transistor (CNTFET) could be a possible alternative to CMOS technology for future VLSI applications. In this work, a comparative study has been carried out on the effects of technology nodes and logic styles on power dissipation, delay, leakages, etc. The technology nodes that are considered here are 90 nm and 32 nm MOSFET technology, and 32 nm CNTFET technology. The logic families considered here are the conventional complementary metal-oxide-semiconductor (CMOS), complementary pass transistor logic (CPL) and transmission gate (TG). The digital circuits considered are NAND, NOR, XOR and MUX gates. HSPICE simulations have been carried out and observed that at 32 nm CNTFET technology, the least power, worst-case delay and least PDP are found as 15.5 nW, 3.11 ps and 0.048 aJ, respectively. It is witnessed that CNTFET-based logics are superior compared to other logic families at different technology nodes.
技术节点和逻辑样式对低功耗高速VLSI应用影响的比较研究
碳纳米管(CNT)场效应晶体管(CNTFET)可能是未来VLSI应用中CMOS技术的潜在替代品。在这项工作中,对技术节点和逻辑样式对功耗、延迟、泄漏等的影响进行了比较研究。这里考虑的技术节点是90nm和32nm的MOSFET技术,以及32nm的cnfet技术。这里考虑的逻辑家族是传统的互补金属氧化物半导体(CMOS),互补通型晶体管逻辑(CPL)和传输门(TG)。考虑的数字电路有NAND、NOR、XOR和MUX门。HSPICE模拟结果表明,在32 nm CNTFET技术下,最小功耗为15.5 nW,最坏延迟为3.11 ps, PDP最小,分别为0.048 aJ。在不同的技术节点上,基于cntfet的逻辑都优于其他逻辑家族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Nanoparticles
International Journal of Nanoparticles Engineering-Mechanical Engineering
CiteScore
1.60
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信