TOTAL DOMINATION INTEGRITY OF WHEEL RELATED GRAPHS

IF 0.3 Q4 MATHEMATICS
N. H. Shah, P. L. Vihol
{"title":"TOTAL DOMINATION INTEGRITY OF WHEEL RELATED GRAPHS","authors":"N. H. Shah, P. L. Vihol","doi":"10.17654/0974165823009","DOIUrl":null,"url":null,"abstract":"The total domination integrity of a simple connected graph G with no isolated vertices is denoted by TDI(G) and defined as TDI(G)=min { left | S right |+m(G-S) : S subseteq V(G) }, where S is a total dominating set of G and m(G - S) is the order of a maximum connected component of G - S. It is a new measure of vulnerability of a graph. This work is aimed to discuss total domination integrity of wheel, gear, helm, closed helm, flower graph, web graph, sunflower graph and web graph without center.","PeriodicalId":40868,"journal":{"name":"Advances and Applications in Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances and Applications in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17654/0974165823009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The total domination integrity of a simple connected graph G with no isolated vertices is denoted by TDI(G) and defined as TDI(G)=min { left | S right |+m(G-S) : S subseteq V(G) }, where S is a total dominating set of G and m(G - S) is the order of a maximum connected component of G - S. It is a new measure of vulnerability of a graph. This work is aimed to discuss total domination integrity of wheel, gear, helm, closed helm, flower graph, web graph, sunflower graph and web graph without center.
车轮相关图的支配完整性
无孤立顶点的简单连通图G的总控制完整性用TDI(G)表示,定义为TDI(G)=min{左| S右|+m(G-S): S subseteq V(G)},其中S为G的总控制集,m(G-S)为G-S的最大连通分量的阶数,是一种新的图的脆弱性度量。本研究旨在探讨轮、齿轮、舵、闭舵、花图、网图、向日葵图和无中心网图的总体控制完整性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
42
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信