A Variant of D’alembert’s Matrix Functional Equation

IF 0.4 Q4 MATHEMATICS
Y. Aissi, D. Zeglami, M. Ayoubi
{"title":"A Variant of D’alembert’s Matrix Functional Equation","authors":"Y. Aissi, D. Zeglami, M. Ayoubi","doi":"10.2478/amsil-2020-0025","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this paper is to characterize the solutions Φ : G → M2(ℂ) of the following matrix functional equations Φ(xy)+Φ(σ(y)x)2=Φ(x)Φ(y),      x,y,∈G,{{\\Phi \\left( {xy} \\right) + \\Phi \\left( {\\sigma \\left( y \\right)x} \\right)} \\over 2} = \\Phi \\left( x \\right)\\Phi \\left( y \\right),\\,\\,\\,\\,\\,\\,x,y, \\in G, and Φ(xy)−Φ(σ(y)x)2=Φ(x)Φ(y),      x,y,∈G,{{\\Phi \\left( {xy} \\right) - \\Phi \\left( {\\sigma \\left( y \\right)x} \\right)} \\over 2} = \\Phi \\left( x \\right)\\Phi \\left( y \\right),\\,\\,\\,\\,\\,\\,x,y, \\in G, where G is a group that need not be abelian, and σ : G → G is an involutive automorphism of G. Our considerations are inspired by the papers [13, 14] in which the continuous solutions of the first equation on abelian topological groups were determined.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"35 1","pages":"21 - 43"},"PeriodicalIF":0.4000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2020-0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract The aim of this paper is to characterize the solutions Φ : G → M2(ℂ) of the following matrix functional equations Φ(xy)+Φ(σ(y)x)2=Φ(x)Φ(y),      x,y,∈G,{{\Phi \left( {xy} \right) + \Phi \left( {\sigma \left( y \right)x} \right)} \over 2} = \Phi \left( x \right)\Phi \left( y \right),\,\,\,\,\,\,x,y, \in G, and Φ(xy)−Φ(σ(y)x)2=Φ(x)Φ(y),      x,y,∈G,{{\Phi \left( {xy} \right) - \Phi \left( {\sigma \left( y \right)x} \right)} \over 2} = \Phi \left( x \right)\Phi \left( y \right),\,\,\,\,\,\,x,y, \in G, where G is a group that need not be abelian, and σ : G → G is an involutive automorphism of G. Our considerations are inspired by the papers [13, 14] in which the continuous solutions of the first equation on abelian topological groups were determined.
达朗贝尔矩阵泛函方程的一种变体
摘要本文的目的是刻画Φ:G的解→ M2(ℂ) 以下矩阵函数方程Φ(xy)+Φ(σ(y)x)2=Φ(x)Φ(y),      x、 y,∈G,{{\Phi\left({xy}\right)+\Phi\left({\sigma\left(y\right)x}\right2}=\Phi\ left(x\right)\Phi \ left(y\ right),\,\,,\,x,y,\在G中,和Φ(xy)Φ(σ(y)x)2=Φ(x)Φ(y),      x、 y,∈G,{{\Phi\left({xy}\right)-\Phi\left({\sigma\left(y\right)x}\right2}=\Phi\left(x\right)\Phi\ left(y\ right),\,\,,\→ G是G的对合自同构。我们的考虑受到文献[13,14]的启发,其中确定了阿贝尔拓扑群上第一方程的连续解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信