A Short Review of Multimodal Biometric Recognition Systems

N. Celik
{"title":"A Short Review of Multimodal Biometric Recognition Systems","authors":"N. Celik","doi":"10.4172/2155-6180.1000355","DOIUrl":null,"url":null,"abstract":"Multimodal biometric systems, which combine two unimodal recognition systems into one single method, can be used to overcome the limitations of individual biometrics. This paper will do a short but critical review on recently developed for enhancing multimodal biometric systems. As can be seen from Celik et al. [1] the biometric information can be combined using different types of fusion of biometric data at different levels, i.e., at the feature level, matchingscore level or decision level. The biometric data classification and throughput of the biometric recognition systems can be carried out by analysing these fusion levels.","PeriodicalId":87294,"journal":{"name":"Journal of biometrics & biostatistics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4172/2155-6180.1000355","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biometrics & biostatistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2155-6180.1000355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Multimodal biometric systems, which combine two unimodal recognition systems into one single method, can be used to overcome the limitations of individual biometrics. This paper will do a short but critical review on recently developed for enhancing multimodal biometric systems. As can be seen from Celik et al. [1] the biometric information can be combined using different types of fusion of biometric data at different levels, i.e., at the feature level, matchingscore level or decision level. The biometric data classification and throughput of the biometric recognition systems can be carried out by analysing these fusion levels.
多模式生物识别系统综述
多模态生物识别系统将两个单模态识别系统结合成一个单一的方法,可以用来克服个体生物识别的局限性。本文将对最近发展起来的增强多模态生物识别系统做一个简短但重要的回顾。从Celik et al.[1]可以看出,生物特征信息可以通过不同类型的生物特征数据融合在不同的层次上进行组合,即特征层、匹配得分层或决策层。通过分析这些融合水平,可以实现生物特征数据的分类和生物特征识别系统的吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信