{"title":"Generalized monoidal effects and handlers","authors":"Ruben P. Pieters, Exequiel Rivas, T. Schrijvers","doi":"10.1017/S0956796820000106","DOIUrl":null,"url":null,"abstract":"Abstract Algebraic effects and handlers are a convenient method for structuring monadic effects with primitive effectful operations and separating the syntax from the interpretation of these operations. However, the scope of conventional handlers is limited as not all side effects are monadic in nature. This paper generalizes the notion of algebraic effects and handlers from monads to generalized monoids, which notably covers applicative functors and arrows as well as monads. For this purpose, we switch the category theoretical basis from free algebras to free monoids. In addition, we show how lax monoidal functors enable the reuse of handlers and programs across different computation classes, for example, handling applicative computations with monadic handlers. We motivate and present these handler interfaces in the context of build systems. Tasks in a build system are represented by a free computation and their interpretation as a handler. This use case is based on the work of Mokhov et al. [(2018). PACMPL2(ICFP), 79:1–79:29.].","PeriodicalId":15874,"journal":{"name":"Journal of Functional Programming","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2020-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0956796820000106","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Programming","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/S0956796820000106","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract Algebraic effects and handlers are a convenient method for structuring monadic effects with primitive effectful operations and separating the syntax from the interpretation of these operations. However, the scope of conventional handlers is limited as not all side effects are monadic in nature. This paper generalizes the notion of algebraic effects and handlers from monads to generalized monoids, which notably covers applicative functors and arrows as well as monads. For this purpose, we switch the category theoretical basis from free algebras to free monoids. In addition, we show how lax monoidal functors enable the reuse of handlers and programs across different computation classes, for example, handling applicative computations with monadic handlers. We motivate and present these handler interfaces in the context of build systems. Tasks in a build system are represented by a free computation and their interpretation as a handler. This use case is based on the work of Mokhov et al. [(2018). PACMPL2(ICFP), 79:1–79:29.].
期刊介绍:
Journal of Functional Programming is the only journal devoted solely to the design, implementation, and application of functional programming languages, spanning the range from mathematical theory to industrial practice. Topics covered include functional languages and extensions, implementation techniques, reasoning and proof, program transformation and synthesis, type systems, type theory, language-based security, memory management, parallelism and applications. The journal is of interest to computer scientists, software engineers, programming language researchers and mathematicians interested in the logical foundations of programming.