Using Neural Networks for a Universal Framework for Agent-based Models

IF 1.8 4区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Georg Jäger
{"title":"Using Neural Networks for a Universal Framework for Agent-based Models","authors":"Georg Jäger","doi":"10.1080/13873954.2021.1889609","DOIUrl":null,"url":null,"abstract":"ABSTRACT Traditional agent-based modelling is mostly rule-based. For many systems, this approach is extremely successful, since the rules are well understood. However, for a large class of systems it is difficult to find rules that adequately describe the behaviour of the agents. A simple example would be two agents playing chess: Here, it is impossible to find simple rules. To solve this problem, we introduce a framework for agent-based modelling that incorporates machine learning. In a process closely related to reinforcement learning, the agents learn rules. As a trade-off, a utility function needs to be defined, which is much simpler in most cases. We test this framework to replicate the results of the prominent Sugarscape model as a proof of principle. Furthermore, we investigate a more complicated version of the Sugarscape model, that exceeds the scope of the original framework. By expanding the framework we also find satisfying results there.","PeriodicalId":49871,"journal":{"name":"Mathematical and Computer Modelling of Dynamical Systems","volume":"27 1","pages":"162 - 178"},"PeriodicalIF":1.8000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13873954.2021.1889609","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computer Modelling of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/13873954.2021.1889609","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 8

Abstract

ABSTRACT Traditional agent-based modelling is mostly rule-based. For many systems, this approach is extremely successful, since the rules are well understood. However, for a large class of systems it is difficult to find rules that adequately describe the behaviour of the agents. A simple example would be two agents playing chess: Here, it is impossible to find simple rules. To solve this problem, we introduce a framework for agent-based modelling that incorporates machine learning. In a process closely related to reinforcement learning, the agents learn rules. As a trade-off, a utility function needs to be defined, which is much simpler in most cases. We test this framework to replicate the results of the prominent Sugarscape model as a proof of principle. Furthermore, we investigate a more complicated version of the Sugarscape model, that exceeds the scope of the original framework. By expanding the framework we also find satisfying results there.
基于智能体模型的通用框架使用神经网络
传统的基于智能体的建模大多是基于规则的。对于许多系统,这种方法是非常成功的,因为规则是很容易理解的。然而,对于大型系统来说,很难找到能够充分描述代理行为的规则。一个简单的例子是两个智能体下棋:在这里,不可能找到简单的规则。为了解决这个问题,我们引入了一个包含机器学习的基于代理的建模框架。在一个与强化学习密切相关的过程中,智能体学习规则。作为权衡,需要定义效用函数,这在大多数情况下要简单得多。我们测试了这个框架,以复制著名的Sugarscape模型的结果,作为原则的证明。此外,我们还研究了一个更复杂的版本的Sugarscape模型,它超出了原始框架的范围。通过扩展框架,我们也发现了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.30%
发文量
7
审稿时长
>12 weeks
期刊介绍: Mathematical and Computer Modelling of Dynamical Systems (MCMDS) publishes high quality international research that presents new ideas and approaches in the derivation, simplification, and validation of models and sub-models of relevance to complex (real-world) dynamical systems. The journal brings together engineers and scientists working in different areas of application and/or theory where researchers can learn about recent developments across engineering, environmental systems, and biotechnology amongst other fields. As MCMDS covers a wide range of application areas, papers aim to be accessible to readers who are not necessarily experts in the specific area of application. MCMDS welcomes original articles on a range of topics including: -methods of modelling and simulation- automation of modelling- qualitative and modular modelling- data-based and learning-based modelling- uncertainties and the effects of modelling errors on system performance- application of modelling to complex real-world systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信