Witt and cohomological invariants of Witt classes

IF 0.5 Q3 MATHEMATICS
N. Garrel
{"title":"Witt and cohomological invariants of Witt classes","authors":"N. Garrel","doi":"10.2140/AKT.2020.5.213","DOIUrl":null,"url":null,"abstract":"We classify all Witt invariants of the functor $I^n$ (powers of the fundamental ideal of the Witt ring), that is functions $I^n(K)\\rightarrow W(K)$ compatible with field extensions, and all mod 2 cohomological invariants, that is functions $I^n(K)\\rightarrow H^*(K,\\mu_2)$. This is done in both cases in terms of certain operations (denoted $\\pi_n^{d}$ and $u_{nd}^{(n)}$ respectively) looking like divided powers, which are shown to be independent and generate all invariants. This can be seen as a lifting of operations defined on mod 2 Milnor K-theory (or equivalently mod 2 Galois cohomology). \nWe also study various properties of these invariants, including behaviour under similitudes, residues for discrete valuations, and restriction from $I^n$ to $I^{n+1}$. The goal is to use this to study invariants of algebras with involutions in future articles.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2017-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/AKT.2020.5.213","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/AKT.2020.5.213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

We classify all Witt invariants of the functor $I^n$ (powers of the fundamental ideal of the Witt ring), that is functions $I^n(K)\rightarrow W(K)$ compatible with field extensions, and all mod 2 cohomological invariants, that is functions $I^n(K)\rightarrow H^*(K,\mu_2)$. This is done in both cases in terms of certain operations (denoted $\pi_n^{d}$ and $u_{nd}^{(n)}$ respectively) looking like divided powers, which are shown to be independent and generate all invariants. This can be seen as a lifting of operations defined on mod 2 Milnor K-theory (or equivalently mod 2 Galois cohomology). We also study various properties of these invariants, including behaviour under similitudes, residues for discrete valuations, and restriction from $I^n$ to $I^{n+1}$. The goal is to use this to study invariants of algebras with involutions in future articles.
Witt类的Witt与上同调不变量
我们分类了函子$I^n$(Witt环的基本理想的幂)的所有Witt不变量,即与域扩展兼容的函数$I^n(K)\rightarrow W(K)$,以及所有mod 2上同调不变量,即函数$I^ n(K,\mu_2)$。这在两种情况下都是根据某些运算(分别表示为$\pi_n^{d}$和$u_{nd}^{(n)}$)来完成的,这些运算看起来像是被划分的幂,它们被证明是独立的并生成所有不变量。这可以被视为对mod 2 Milnor K-理论(或等价地mod 2 Galois上同调)上定义的运算的提升。我们还研究了这些不变量的各种性质,包括相似性下的行为、离散估值的残差以及从$I^n$到$I^{n+1}$的限制。目标是在未来的文章中使用它来研究具有对合的代数的不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信