Lin Li, Lei Lin, S. Lei, Si Shi, Chun Chen, Z. Xia
{"title":"Maslinic Acid Inhibits Myocardial Ischemia-Reperfusion Injury-Induced Apoptosis and Necroptosis via Promoting Autophagic Flux.","authors":"Lin Li, Lei Lin, S. Lei, Si Shi, Chun Chen, Z. Xia","doi":"10.1089/dna.2021.0918","DOIUrl":null,"url":null,"abstract":"Apoptosis, necroptosis, and autophagy are the major programmed cell death in myocardial ischemia-reperfusion injury (MIRI). Maslinic acid (MA) has been found to regulate pathophysiological processes that mediate programmed cell death in MIRI, such as inflammation and oxidative stress. However, its effects on MIRI remain unclear. This study intends to explore the role of MA in MIRI. In vitro, MA had no obvious cytotoxic effects on H9C2 cells, and significantly improved the impaired cell viability caused by hypoxia reoxygenation (HR). In vivo, MA significantly alleviated ischemia reperfusion (IR)-induced left ventricular myocardial tissue injury, downregulated creatine kinase-myocardial band (CK-MB), and lactate dehydrogenase (LDH) levels in serum as well as reducing infarct size. Moreover, MA inhibited HR-induced mitochondrial apoptosis and necroptosis in vitro and in vivo. Of interest, MA interacts with lysosome-associated membrane protein 2 (LAMP2). MA protected LAMP2 from IR and promoting autophagic flux to inhibit apoptosis and necroptosis, whereas these effects were reversed by co-treatment with lysosomal inhibitor BarfA1. In conclusion, MA can inhibit MIRI-induced apoptosis and necroptosis by promoting autophagic flux. These results support that MA is a potential agent to ameliorate MIRI.","PeriodicalId":11248,"journal":{"name":"DNA and cell biology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA and cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/dna.2021.0918","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Apoptosis, necroptosis, and autophagy are the major programmed cell death in myocardial ischemia-reperfusion injury (MIRI). Maslinic acid (MA) has been found to regulate pathophysiological processes that mediate programmed cell death in MIRI, such as inflammation and oxidative stress. However, its effects on MIRI remain unclear. This study intends to explore the role of MA in MIRI. In vitro, MA had no obvious cytotoxic effects on H9C2 cells, and significantly improved the impaired cell viability caused by hypoxia reoxygenation (HR). In vivo, MA significantly alleviated ischemia reperfusion (IR)-induced left ventricular myocardial tissue injury, downregulated creatine kinase-myocardial band (CK-MB), and lactate dehydrogenase (LDH) levels in serum as well as reducing infarct size. Moreover, MA inhibited HR-induced mitochondrial apoptosis and necroptosis in vitro and in vivo. Of interest, MA interacts with lysosome-associated membrane protein 2 (LAMP2). MA protected LAMP2 from IR and promoting autophagic flux to inhibit apoptosis and necroptosis, whereas these effects were reversed by co-treatment with lysosomal inhibitor BarfA1. In conclusion, MA can inhibit MIRI-induced apoptosis and necroptosis by promoting autophagic flux. These results support that MA is a potential agent to ameliorate MIRI.
期刊介绍:
DNA and Cell Biology delivers authoritative, peer-reviewed research on all aspects of molecular and cellular biology, with a unique focus on combining mechanistic and clinical studies to drive the field forward.
DNA and Cell Biology coverage includes:
Gene Structure, Function, and Regulation
Gene regulation
Molecular mechanisms of cell activation
Mechanisms of transcriptional, translational, or epigenetic control of gene expression
Molecular Medicine
Molecular pathogenesis
Genetic approaches to cancer and autoimmune diseases
Translational studies in cell and molecular biology
Cellular Organelles
Autophagy
Apoptosis
P bodies
Peroxisosomes
Protein Biosynthesis and Degradation
Regulation of protein synthesis
Post-translational modifications
Control of degradation
Cell-Autonomous Inflammation and Host Cell Response to Infection
Responses to cytokines and other physiological mediators
Evasive pathways of pathogens.