Classical Zariski Topology on Prime Spectrum of Lattice Modules

Q4 Mathematics
V. Borkar, P. Girase, Narayan Phadatare
{"title":"Classical Zariski Topology on Prime Spectrum of Lattice Modules","authors":"V. Borkar, P. Girase, Narayan Phadatare","doi":"10.22124/JART.2018.11106.1112","DOIUrl":null,"url":null,"abstract":"Let $M$ be a lattice module over a  $C$-lattice $L$.  Let $Spec^{p}(M)$ be the collection of all prime elements of $M$. In this article, we consider a  topology on $Spec^{p}(M)$, called the classical Zariski topology and investigate the topological properties of $Spec^{p}(M)$ and the algebraic properties of $M$. We investigate this topological space from the point of view of spectral spaces.  By  Hochster's characterization of a spectral space, we show that for each lattice module $M$ with finite spectrum, $Spec^{p}(M)$ is a spectral space. Also we introduce finer patch topology on $Spec^{p}(M)$ and we show that $Spec^{p}(M)$ with finer patch topology is a compact space and every irreducible closed subset of $Spec^{p}(M)$ (with classical Zariski topology) has a generic point  and $Spec^{p}(M)$ is a spectral space, for a lattice module $M$ which has ascending chain condition on prime radical elements.","PeriodicalId":52302,"journal":{"name":"Journal of Algebra and Related Topics","volume":"6 1","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22124/JART.2018.11106.1112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

Let $M$ be a lattice module over a  $C$-lattice $L$.  Let $Spec^{p}(M)$ be the collection of all prime elements of $M$. In this article, we consider a  topology on $Spec^{p}(M)$, called the classical Zariski topology and investigate the topological properties of $Spec^{p}(M)$ and the algebraic properties of $M$. We investigate this topological space from the point of view of spectral spaces.  By  Hochster's characterization of a spectral space, we show that for each lattice module $M$ with finite spectrum, $Spec^{p}(M)$ is a spectral space. Also we introduce finer patch topology on $Spec^{p}(M)$ and we show that $Spec^{p}(M)$ with finer patch topology is a compact space and every irreducible closed subset of $Spec^{p}(M)$ (with classical Zariski topology) has a generic point  and $Spec^{p}(M)$ is a spectral space, for a lattice module $M$ which has ascending chain condition on prime radical elements.
格模素数谱上的经典Zariski拓扑
设$M$是一个格模在$C$-格$L$上。设$Spec^{p}(M)$是$M$的所有素数元素的集合。在本文中,我们考虑了$Spec^{p}(M)$上的拓扑,称为经典Zariski拓扑,并研究了$Spec^{p}(M)$的拓扑性质和$M$的代数性质。我们从谱空间的角度来研究这个拓扑空间。通过谱空间的Hochster表征,我们证明了对于每一个具有有限谱的格模$M$, $Spec^{p}(M)$是一个谱空间。同时,我们在$Spec^{p}(M)$上引入了更精细的patch拓扑,证明了$Spec^{p}(M)$具有更精细的patch拓扑是一个紧空间,对于素基元上具有升链条件的格模$M$, $Spec^{p}(M)$的每个不可约闭子集(具有经典Zariski拓扑)都有一个泛点,$Spec^{p}(M)$是一个谱空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra and Related Topics
Journal of Algebra and Related Topics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信