The design of self-organizing human–swarm intelligence

IF 1.2 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jonas D. Rockbach, Maren Bennewitz
{"title":"The design of self-organizing human–swarm intelligence","authors":"Jonas D. Rockbach, Maren Bennewitz","doi":"10.1177/10597123211017550","DOIUrl":null,"url":null,"abstract":"Human–swarm interaction is a frontier in the realms of swarm robotics and human-factors engineering. However, no holistic theory has been explicitly formulated that can inform how humans and robot swarms should interact through an interface while considering real-world demands, the relative capabilities of the components, as well as the desired joint-system behaviours. In this article, we apply a holistic perspective that we refer to as joint human–swarm loops, that is, a cybernetic system made of human, swarm and interface. We argue that a solution for human–swarm interaction should make the joint human–swarm loop an intelligent system that balances between centralized and decentralized control. The swarm-amplified human is suggested as a possible design that combines perspectives from swarm robotics, human-factors engineering and theoretical neuroscience to produce such a joint human–swarm loop. Essentially, it states that the robot swarm should be integrated into the human’s low-level nervous system function. This requires modelling both the robot swarm and the biological nervous system as self-organizing systems. We discuss multiple design implications that follow from the swarm-amplified human, including a computational experiment that shows how the robot swarm itself can be a self-organizing interface based on minimal computational logic.","PeriodicalId":55552,"journal":{"name":"Adaptive Behavior","volume":"30 1","pages":"361 - 386"},"PeriodicalIF":1.2000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/10597123211017550","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adaptive Behavior","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/10597123211017550","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 10

Abstract

Human–swarm interaction is a frontier in the realms of swarm robotics and human-factors engineering. However, no holistic theory has been explicitly formulated that can inform how humans and robot swarms should interact through an interface while considering real-world demands, the relative capabilities of the components, as well as the desired joint-system behaviours. In this article, we apply a holistic perspective that we refer to as joint human–swarm loops, that is, a cybernetic system made of human, swarm and interface. We argue that a solution for human–swarm interaction should make the joint human–swarm loop an intelligent system that balances between centralized and decentralized control. The swarm-amplified human is suggested as a possible design that combines perspectives from swarm robotics, human-factors engineering and theoretical neuroscience to produce such a joint human–swarm loop. Essentially, it states that the robot swarm should be integrated into the human’s low-level nervous system function. This requires modelling both the robot swarm and the biological nervous system as self-organizing systems. We discuss multiple design implications that follow from the swarm-amplified human, including a computational experiment that shows how the robot swarm itself can be a self-organizing interface based on minimal computational logic.
自组织人群智能的设计
人-群体交互是群体机器人和人因工程领域的前沿。然而,在考虑现实世界的需求、组件的相对能力以及所需的关节系统行为的同时,还没有明确的整体理论可以告知人类和机器人群应该如何通过界面进行交互。在这篇文章中,我们应用了一个整体的观点,我们称之为人类-群体联合回路,即由人类、群体和界面组成的控制论系统。我们认为,人-群交互的解决方案应该使人-群联合回路成为一个在集中控制和分散控制之间平衡的智能系统。群体扩增人类被认为是一种可能的设计,它结合了群体机器人、人因工程和理论神经科学的观点,产生了这样一个人类-群体联合回路。从本质上讲,它指出机器人群体应该融入人类的低级神经系统功能。这需要将机器人群体和生物神经系统建模为自组织系统。我们讨论了群体放大后的人类的多种设计含义,包括一个计算实验,该实验表明机器人群体本身可以是一个基于最小计算逻辑的自组织接口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Adaptive Behavior
Adaptive Behavior 工程技术-计算机:人工智能
CiteScore
4.30
自引率
18.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: _Adaptive Behavior_ publishes articles on adaptive behaviour in living organisms and autonomous artificial systems. The official journal of the _International Society of Adaptive Behavior_, _Adaptive Behavior_, addresses topics such as perception and motor control, embodied cognition, learning and evolution, neural mechanisms, artificial intelligence, behavioral sequences, motivation and emotion, characterization of environments, decision making, collective and social behavior, navigation, foraging, communication and signalling. Print ISSN: 1059-7123
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信