Influence of mold cavity thickness on electrical, morphological and thermal properties of polypropylene/carbon micromoldings

IF 1.1 4区 工程技术 Q4 ENGINEERING, CHEMICAL
Shengtai Zhou, Renze Jiang, Xue Lei, H. Zou, A. Hrymak
{"title":"Influence of mold cavity thickness on electrical, morphological and thermal properties of polypropylene/carbon micromoldings","authors":"Shengtai Zhou, Renze Jiang, Xue Lei, H. Zou, A. Hrymak","doi":"10.1515/ipp-2022-4288","DOIUrl":null,"url":null,"abstract":"Abstract In this work, a comparative study on the electrical conductivity (σ) and thermal properties of polypropylene (PP)/carbon microparts with different part thickness (namely, 0.85 and 0.50 mm) is reported. Two different types of carbon filler (i.e., CNT and CB) were adopted to study the efficacy of different carbon fillers in improving the σ of PP/carbon microparts. In general, the σ of 0.85 mm thickness microparts were higher than the 0.50 mm thickness microparts, regardless of the carbon filler type and testing directions. This suggested that higher shearing conditions that prevailed in the microinjection molding (μIM) process were unfavorable for the formation of intact conductive pathways in corresponding moldings, albeit the distribution of carbon fillers turned better with increasing shear rates, as confirmed by morphology observations. Differential scanning calorimetry results showed that prior thermomechanical histories (including melt blending and μIM) experienced by the polymer melts had an influence on the thermal behavior of subsequent moldings. Also, there existed a strong shear flow-induced crystallization of polymer chains during μIM because the crystallinity of microparts was higher than that of feed materials.","PeriodicalId":14410,"journal":{"name":"International Polymer Processing","volume":"38 1","pages":"214 - 224"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Polymer Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ipp-2022-4288","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this work, a comparative study on the electrical conductivity (σ) and thermal properties of polypropylene (PP)/carbon microparts with different part thickness (namely, 0.85 and 0.50 mm) is reported. Two different types of carbon filler (i.e., CNT and CB) were adopted to study the efficacy of different carbon fillers in improving the σ of PP/carbon microparts. In general, the σ of 0.85 mm thickness microparts were higher than the 0.50 mm thickness microparts, regardless of the carbon filler type and testing directions. This suggested that higher shearing conditions that prevailed in the microinjection molding (μIM) process were unfavorable for the formation of intact conductive pathways in corresponding moldings, albeit the distribution of carbon fillers turned better with increasing shear rates, as confirmed by morphology observations. Differential scanning calorimetry results showed that prior thermomechanical histories (including melt blending and μIM) experienced by the polymer melts had an influence on the thermal behavior of subsequent moldings. Also, there existed a strong shear flow-induced crystallization of polymer chains during μIM because the crystallinity of microparts was higher than that of feed materials.
模腔厚度对聚丙烯/碳微模电学、形态和热学性能的影响
摘要在本工作中,对不同零件厚度(即0.85和0.50mm)的聚丙烯(PP)/碳微粒的电导率(σ)和热性能进行了比较研究。采用两种不同类型的碳填料(即CNT和CB)来研究不同碳填料对PP/碳微粒σ的改善效果。通常,无论碳填料类型和测试方向如何,0.85 mm厚度的微米部分的σ都高于0.50 mm厚度的纳米部分。这表明,微注射成型(μIM)工艺中普遍存在的较高剪切条件不利于在相应的成型品中形成完整的导电通路,尽管碳填料的分布随着剪切速率的增加而变得更好,正如形态学观察所证实的那样。差示扫描量热法结果表明,聚合物熔体经历的先前热机械历史(包括熔体共混和μIM)对随后成型的热行为有影响。此外,在μIM过程中,由于微部分的结晶度高于原料,聚合物链存在强烈的剪切流诱导结晶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Polymer Processing
International Polymer Processing 工程技术-高分子科学
CiteScore
2.20
自引率
7.70%
发文量
62
审稿时长
6 months
期刊介绍: International Polymer Processing offers original research contributions, invited review papers and recent technological developments in processing thermoplastics, thermosets, elastomers and fibers as well as polymer reaction engineering. For more than 25 years International Polymer Processing, the journal of the Polymer Processing Society, provides strictly peer-reviewed, high-quality articles and rapid communications from the leading experts around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信