Multiblock discriminant correspondence analysis: Exploring group differences with structured categorical data

Q2 Psychology
Anjali Krishnan , Ju-Chi Yu , Rona Miles , Derek Beaton , Laura A. Rabin , Hervé Abdi
{"title":"Multiblock discriminant correspondence analysis: Exploring group differences with structured categorical data","authors":"Anjali Krishnan ,&nbsp;Ju-Chi Yu ,&nbsp;Rona Miles ,&nbsp;Derek Beaton ,&nbsp;Laura A. Rabin ,&nbsp;Hervé Abdi","doi":"10.1016/j.metip.2022.100100","DOIUrl":null,"url":null,"abstract":"<div><p>Psychological research often involves complex datasets that cannot easily be analyzed using traditional statistical methods. Multiblock Discriminant Correspondence Analysis (multiblock <span>dica</span>, also called <span>mudica</span>) examines group differences in large, structured categorical datasets and identifies blocks of variables that contribute to these differences. Data for this illustration were obtained from a study on mental health literacy (<em>N</em> = 648) that included 33 questions that were arranged into four blocks: etiology, symptoms, treatment, and general knowledge of psychological disorders. With non-parametric inference tests and results displayed as intuitive maps, <span>mudica</span> revealed differences in performance across groups not readily detectable using standard methods.</p></div>","PeriodicalId":93338,"journal":{"name":"Methods in Psychology (Online)","volume":"7 ","pages":"Article 100100"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259026012200011X/pdfft?md5=8d43bd1e3a8ae0314a26784c78413cd2&pid=1-s2.0-S259026012200011X-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in Psychology (Online)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259026012200011X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Psychology","Score":null,"Total":0}
引用次数: 1

Abstract

Psychological research often involves complex datasets that cannot easily be analyzed using traditional statistical methods. Multiblock Discriminant Correspondence Analysis (multiblock dica, also called mudica) examines group differences in large, structured categorical datasets and identifies blocks of variables that contribute to these differences. Data for this illustration were obtained from a study on mental health literacy (N = 648) that included 33 questions that were arranged into four blocks: etiology, symptoms, treatment, and general knowledge of psychological disorders. With non-parametric inference tests and results displayed as intuitive maps, mudica revealed differences in performance across groups not readily detectable using standard methods.

多块判别对应分析:用结构化分类数据探索群体差异
心理学研究经常涉及复杂的数据集,这些数据集很难用传统的统计方法进行分析。多块判别对应分析(Multiblock Discriminant Correspondence Analysis,多块dica,也称为mudica)检查大型结构化分类数据集中的组差异,并识别导致这些差异的变量块。本插图的数据来自一项关于心理健康素养的研究(N = 648),该研究包括33个问题,分为四个部分:病因、症状、治疗和心理障碍的一般知识。通过非参数推理测试和结果显示为直观的地图,mudica揭示了使用标准方法不易检测到的组间性能差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods in Psychology (Online)
Methods in Psychology (Online) Experimental and Cognitive Psychology, Clinical Psychology, Developmental and Educational Psychology
CiteScore
5.50
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信