A new 4-chromatic edge critical Koester graph

IF 1 Q1 MATHEMATICS
A. Dobrynin
{"title":"A new 4-chromatic edge critical Koester graph","authors":"A. Dobrynin","doi":"10.47443/dml.2022.166","DOIUrl":null,"url":null,"abstract":"Let S be a decomposition of a simple 4-regular plane graph into edge-disjoint cycles such that every two adjacent edges on a face belong to different cycles of S . Such graphs, called Gr¨otzsch–Sachs graphs, may be considered as a result of a superposition of simple closed curves in the plane with tangencies disallowed. Koester studied the coloring of Gr¨otzsch– Sachs graphs when all curves are circles. In 1984, he presented the first example of a 4-chromatic edge critical plane graph of order 40 formed by 7 circles. In the present paper, a new 4-chromatic edge critical graph generated by circles in the plane is presented.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2022.166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let S be a decomposition of a simple 4-regular plane graph into edge-disjoint cycles such that every two adjacent edges on a face belong to different cycles of S . Such graphs, called Gr¨otzsch–Sachs graphs, may be considered as a result of a superposition of simple closed curves in the plane with tangencies disallowed. Koester studied the coloring of Gr¨otzsch– Sachs graphs when all curves are circles. In 1984, he presented the first example of a 4-chromatic edge critical plane graph of order 40 formed by 7 circles. In the present paper, a new 4-chromatic edge critical graph generated by circles in the plane is presented.
一个新的四色边缘临界Koester图
设S是将一个简单的4正则平面图分解为边不相交的环,使得一个面上的每两条相邻的边都属于S的不同环。这种图被称为格罗茨-萨克斯图,可以看作是平面上不允许相切的简单闭合曲线叠加的结果。当所有曲线都是圆时,Koester研究了greotzsch - Sachs图的着色。1984年,他提出了第一个由7个圆构成的40阶4色边缘临界平面图的例子。本文提出了一种新的由平面上的圆生成的四色边缘临界图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信