Composite bias-reduced L p -quantile-based estimators of extreme quantiles and expectiles

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Gilles Stupfler, Antoine Usseglio-Carleve
{"title":"Composite bias-reduced \n \n \n \n L\n \n \n p\n \n \n -quantile-based estimators of extreme quantiles and expectiles","authors":"Gilles Stupfler,&nbsp;Antoine Usseglio-Carleve","doi":"10.1002/cjs.11703","DOIUrl":null,"url":null,"abstract":"<p>Quantiles are a fundamental concept in extreme value theory. They can be obtained from a minimization framework using an asymmetric absolute error loss criterion. The companion notion of expectiles, based on asymmetric squared rather than asymmetric absolute error loss minimization, has received substantial attention from the fields of actuarial science, finance, and econometrics over the last decade. Quantiles and expectiles can be embedded in a common framework of <math>\n <mrow>\n <msup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msup>\n </mrow></math>-quantiles, whose extreme value properties have been explored very recently. Although this generalized notion of quantiles has shown potential for the estimation of extreme quantiles and expectiles, available estimators remain quite difficult to use: they suffer from substantial bias, and the question of the choice of the tuning parameter <math>\n <mrow>\n <mi>p</mi>\n </mrow></math> remains open. In this article, we work in a context of heavy tails and construct composite bias-reduced estimators of extreme quantiles and expectiles based on <math>\n <mrow>\n <msup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msup>\n </mrow></math>-quantiles. We provide a discussion of the data-driven choice of <math>\n <mrow>\n <mi>p</mi>\n </mrow></math> and of the anchor <math>\n <mrow>\n <msup>\n <mrow>\n <mi>L</mi>\n </mrow>\n <mrow>\n <mi>p</mi>\n </mrow>\n </msup>\n </mrow></math>-quantile level in practice. The proposed methodology is compared with existing approaches on simulated data and real data.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11703","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

Quantiles are a fundamental concept in extreme value theory. They can be obtained from a minimization framework using an asymmetric absolute error loss criterion. The companion notion of expectiles, based on asymmetric squared rather than asymmetric absolute error loss minimization, has received substantial attention from the fields of actuarial science, finance, and econometrics over the last decade. Quantiles and expectiles can be embedded in a common framework of L p -quantiles, whose extreme value properties have been explored very recently. Although this generalized notion of quantiles has shown potential for the estimation of extreme quantiles and expectiles, available estimators remain quite difficult to use: they suffer from substantial bias, and the question of the choice of the tuning parameter p remains open. In this article, we work in a context of heavy tails and construct composite bias-reduced estimators of extreme quantiles and expectiles based on L p -quantiles. We provide a discussion of the data-driven choice of p and of the anchor L p -quantile level in practice. The proposed methodology is compared with existing approaches on simulated data and real data.

基于组合偏倚减少的Lp分位数的极端分位数和期望分位数估计量
分位数是极值理论中的一个基本概念。它们可以从使用非对称绝对误差损失准则的最小化框架中得到。在过去的十年中,基于非对称平方而非非对称绝对误差损失最小化的期望球的伴生概念受到了精算科学、金融和计量经济学领域的大量关注。分位数和期望位数可以嵌入到Lp -分位数的共同框架中,其极值属性最近已经被探索。虽然这种广义的分位数概念已经显示出估计极端分位数和预期位数的潜力,但可用的估计器仍然很难使用:它们存在很大的偏差,并且选择调谐参数p的问题仍然是开放的。在本文中,我们在重尾的背景下工作,并基于Lp -分位数构建了极端分位数和预期位数的复合偏倚减少估计器。我们提供了在实践中数据驱动的p和锚点Lp分位水平的选择的讨论。并在仿真数据和实际数据上与现有方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics. The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信