Handling Planned and Unplanned Missing Data in a Longitudinal Study

IF 1.3
Mathieu Caron-Diotte, M. Pelletier‐Dumas, É. Lacourse, A. Dorfman, D. Stolle, J. Lina, Roxane de la Sablonnière
{"title":"Handling Planned and Unplanned Missing Data in a Longitudinal Study","authors":"Mathieu Caron-Diotte, M. Pelletier‐Dumas, É. Lacourse, A. Dorfman, D. Stolle, J. Lina, Roxane de la Sablonnière","doi":"10.20982/tqmp.19.2.p123","DOIUrl":null,"url":null,"abstract":"While analyzing data, researchers are often faced with missing values. This is especially common in longitudinal studies in which participants might skip assessments. Unwanted missing data can introduce bias in the results and should thus be handled appropriately. However, researchers can sometimes want to include missing values in their data collection design to reduce its length and cost, a method called “planned missingness.” This paper review the recommended practices for handling both planned and unplanned missing data, with a focus on longitudinal studies. The current guidelines suggest to either use Full Information Maximum Likelihood or Multiple Imputation. Those techniques are illustrated with R code in the context of a longitudinal study with a representative Canadian sample on the psychological impacts of the COVID-19 pandemic","PeriodicalId":93055,"journal":{"name":"The quantitative methods for psychology","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The quantitative methods for psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20982/tqmp.19.2.p123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

While analyzing data, researchers are often faced with missing values. This is especially common in longitudinal studies in which participants might skip assessments. Unwanted missing data can introduce bias in the results and should thus be handled appropriately. However, researchers can sometimes want to include missing values in their data collection design to reduce its length and cost, a method called “planned missingness.” This paper review the recommended practices for handling both planned and unplanned missing data, with a focus on longitudinal studies. The current guidelines suggest to either use Full Information Maximum Likelihood or Multiple Imputation. Those techniques are illustrated with R code in the context of a longitudinal study with a representative Canadian sample on the psychological impacts of the COVID-19 pandemic
纵向研究中计划和非计划缺失数据的处理
在分析数据时,研究人员经常面临缺失值的问题。这在纵向研究中尤其常见,因为参与者可能会跳过评估。不需要的缺失数据可能会在结果中引入偏差,因此应适当处理。然而,研究人员有时希望在他们的数据收集设计中包括缺失值,以减少其长度和成本,这种方法称为“计划缺失”。本文回顾了处理计划和计划外丢失数据的建议做法,重点是纵向研究。目前的指南建议使用全信息最大似然或多重Imputation。这些技术用R代码在一项纵向研究的背景下进行了说明,该研究以具有代表性的加拿大样本为样本,研究了COVID-19大流行的心理影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信