Fault diagnosis of industrial robot based on dual-module attention convolutional neural network

Kaijie Lu, Chong Chen, Tao Wang, Lianglun Cheng, Jian Qin
{"title":"Fault diagnosis of industrial robot based on dual-module attention convolutional neural network","authors":"Kaijie Lu,&nbsp;Chong Chen,&nbsp;Tao Wang,&nbsp;Lianglun Cheng,&nbsp;Jian Qin","doi":"10.1007/s43684-022-00031-5","DOIUrl":null,"url":null,"abstract":"<div><p>Fault diagnosis plays a vital role in assessing the health management of industrial robots and improving maintenance schedules. In recent decades, artificial intelligence-based data-driven approaches have made significant progress in machine fault diagnosis using monitoring data. However, current methods pay less attention to correlations and internal differences in monitoring data, resulting in limited diagnostic performance. In this paper, a data-driven method is proposed for the fault diagnosis of industrial robot reducers, that is, a dual-module attention convolutional neural network (DMA-CNN). This method aims to diagnose the fault state of industrial robot reducer. It establishes two parallel convolutional neural networks with two different attentions to capture the different features related to the fault. Finally, the features are fused to obtain the fault diagnosis results (normal or abnormal). The fault diagnosis effect of the DMA-CNN method and other attention models are compared and analyzed. The effectiveness of the method is verified on a dataset of real industrial robots.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-022-00031-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-022-00031-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fault diagnosis plays a vital role in assessing the health management of industrial robots and improving maintenance schedules. In recent decades, artificial intelligence-based data-driven approaches have made significant progress in machine fault diagnosis using monitoring data. However, current methods pay less attention to correlations and internal differences in monitoring data, resulting in limited diagnostic performance. In this paper, a data-driven method is proposed for the fault diagnosis of industrial robot reducers, that is, a dual-module attention convolutional neural network (DMA-CNN). This method aims to diagnose the fault state of industrial robot reducer. It establishes two parallel convolutional neural networks with two different attentions to capture the different features related to the fault. Finally, the features are fused to obtain the fault diagnosis results (normal or abnormal). The fault diagnosis effect of the DMA-CNN method and other attention models are compared and analyzed. The effectiveness of the method is verified on a dataset of real industrial robots.

基于双模注意卷积神经网络的工业机器人故障诊断
故障诊断在评估工业机器人的健康管理和改进维护计划方面发挥着至关重要的作用。近几十年来,基于人工智能的数据驱动方法在利用监测数据进行机器故障诊断方面取得了重大进展。然而,目前的方法较少关注监测数据的相关性和内部差异,导致诊断性能有限。本文提出了一种用于工业机器人减速器故障诊断的数据驱动方法,即双模块注意力卷积神经网络(DMA-CNN)。该方法旨在诊断工业机器人减速器的故障状态。它建立了两个并行的、具有两种不同注意力的卷积神经网络,以捕捉与故障相关的不同特征。最后,通过融合这些特征得出故障诊断结果(正常或异常)。对 DMA-CNN 方法和其他注意力模型的故障诊断效果进行了比较和分析。在真实工业机器人数据集上验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信