Asymmetrizing cost and density of vertex-transitive cubic graphs

Q3 Mathematics
W. Imrich, T. Lachmann, T. Tucker, G. Wiegel
{"title":"Asymmetrizing cost and density of vertex-transitive cubic graphs","authors":"W. Imrich, T. Lachmann, T. Tucker, G. Wiegel","doi":"10.26493/2590-9770.1395.a37","DOIUrl":null,"url":null,"abstract":"A set S of vertices in a graph G with nontrivial automorphism group is asymmetrizing if the identity mapping is the only automorphism of G that preserves S as a set. If such sets exist, then their minimum cardinality is the asymmetrizing cost ρ ( G ) of G . For finite graphs the asymmetrizing density δ ( G ) of G is the quotient of the size of S by the order of G . For infinite graphs δ ( G ) is defined by a limit process. Many classes of infinite graphs with δ ( G ) = 0 are known, but seemingly no infinite vertex transitive graphs with δ ( G ) > 0. Here, we construct connected, infinite vertex transitive cubic graphs of asymmetrizing density δ ( G ) = 1 n 2 n +1 for each n ≥ 1. We also construct finite vertex transitive cubic graphs of arbitrarily large asymmetrizing cost. The examples are Split Praeger–Xu graphs, for which we provide another characterization. This contrasts with our results for vertex transitive cubic graphs that have one arc orbit or are so-called synchronously connected graphs with two arc orbits. For them we show that ρ ( G ) is either ≤ 5 or infinite. In the latter case δ ( G ) = 0.","PeriodicalId":36246,"journal":{"name":"Art of Discrete and Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art of Discrete and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1395.a37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

A set S of vertices in a graph G with nontrivial automorphism group is asymmetrizing if the identity mapping is the only automorphism of G that preserves S as a set. If such sets exist, then their minimum cardinality is the asymmetrizing cost ρ ( G ) of G . For finite graphs the asymmetrizing density δ ( G ) of G is the quotient of the size of S by the order of G . For infinite graphs δ ( G ) is defined by a limit process. Many classes of infinite graphs with δ ( G ) = 0 are known, but seemingly no infinite vertex transitive graphs with δ ( G ) > 0. Here, we construct connected, infinite vertex transitive cubic graphs of asymmetrizing density δ ( G ) = 1 n 2 n +1 for each n ≥ 1. We also construct finite vertex transitive cubic graphs of arbitrarily large asymmetrizing cost. The examples are Split Praeger–Xu graphs, for which we provide another characterization. This contrasts with our results for vertex transitive cubic graphs that have one arc orbit or are so-called synchronously connected graphs with two arc orbits. For them we show that ρ ( G ) is either ≤ 5 or infinite. In the latter case δ ( G ) = 0.
顶点传递三次图的非对称代价和密度
具有非平凡自同构群的图G中的一个顶点集S是不对称的,如果恒等映射是G的唯一自同构,使S保持为一个集合。如果存在这样的集合,那么它们的最小基数就是G的不对称代价ρ (G)。对于有限图,G的不对称密度δ (G)是S的大小除以G阶的商。对于无限图,δ (G)由极限过程定义。已知许多类δ (G) = 0的无限图,但似乎没有δ (G) > 0的无限顶点传递图。在这里,我们构造了非对称密度δ (G) = 1 n 2 n +1的连通的无限顶点传递三次图。我们还构造了任意大非对称代价的有限顶点传递三次图。这些例子是Split Praeger-Xu图,我们提供了另一种表征。这与我们对于具有一个弧轨道的顶点传递三次图或具有两个弧轨道的所谓同步连接图的结果形成对比。对于它们,我们证明ρ (G)要么≤5,要么无穷大。在后一种情况下δ (G) = 0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Art of Discrete and Applied Mathematics
Art of Discrete and Applied Mathematics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.90
自引率
0.00%
发文量
43
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信