The structure of matrix polynomial algebras

IF 0.5 Q3 MATHEMATICS
Bertrand Nguefack
{"title":"The structure of matrix polynomial algebras","authors":"Bertrand Nguefack","doi":"10.24330/ieja.1151001","DOIUrl":null,"url":null,"abstract":"This work formally introduces and starts investigating the structure of matrix polynomial algebra extensions \nof a coefficient algebra by (elementary) matrix-variables over \n a ground polynomial ring in not necessary commuting variables. \n These matrix subalgebras of full matrix rings over polynomial rings show up \n in noncommutative algebraic geometry. We carefully study their (one-sided or bilateral) noetherianity, obtaining a precise lift of the Hilbert Basis Theorem when the \nground ring is either a commutative polynomial ring, a free noncommutative polynomial ring or a skew polynomial ring extension by a free commutative term-ordered monoid. \nWe equally address the natural but rather delicate question of recognising which matrix polynomial algebras are Cayley-Hamilton algebras, \nwhich are interesting noncommutative algebras arising from the study of $\\mathrm{Gl}_{n}$-varieties.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.1151001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work formally introduces and starts investigating the structure of matrix polynomial algebra extensions of a coefficient algebra by (elementary) matrix-variables over a ground polynomial ring in not necessary commuting variables. These matrix subalgebras of full matrix rings over polynomial rings show up in noncommutative algebraic geometry. We carefully study their (one-sided or bilateral) noetherianity, obtaining a precise lift of the Hilbert Basis Theorem when the ground ring is either a commutative polynomial ring, a free noncommutative polynomial ring or a skew polynomial ring extension by a free commutative term-ordered monoid. We equally address the natural but rather delicate question of recognising which matrix polynomial algebras are Cayley-Hamilton algebras, which are interesting noncommutative algebras arising from the study of $\mathrm{Gl}_{n}$-varieties.
矩阵多项式代数的结构
这项工作正式引入并开始研究系数代数的矩阵多项式代数的结构——在不必要的交换变量中,通过地面多项式环上的(初等)矩阵变量来扩展系数代数。多项式环上的全矩阵环的这些矩阵子代数表现在非对易代数几何中。我们仔细研究了它们(单侧或双侧)的非对称性,得到了当地环是交换多项式环、自由非对易多项式环或由自由交换项有序半群扩展的斜多项式环时希尔伯特基定理的精确提升。我们同样解决了一个自然但相当微妙的问题,即识别哪些矩阵多项式代数是Cayley-Hamilton代数,它们是由$\mathrm的研究产生的有趣的非交换代数{Gl}_{n} $-品种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
16.70%
发文量
36
审稿时长
36 weeks
期刊介绍: The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信