Estimación de la producción de cebada a partir de imágenes Sentinel-1, Sentinel-2 y variables climáticas

IF 0.4 Q4 REMOTE SENSING
Cristian Iranzo, R. Montorio, Alberto García-Martín
{"title":"Estimación de la producción de cebada a partir de imágenes Sentinel-1, Sentinel-2 y variables climáticas","authors":"Cristian Iranzo, R. Montorio, Alberto García-Martín","doi":"10.4995/raet.2022.15099","DOIUrl":null,"url":null,"abstract":"A precise estimation of agricultural production provides relevant information for upcoming seasons, and helps in the assessment of crop losses before harvest in case of adverse situations. The objective of this work is to explore the development of a model capable of estimating barley production of a small agricultural production (127 ha) in Belchite, Spain. Variables adapted to the crop calendar of the growing barley are used to achieve that purpose. The variables have been created with weather data and remote sensing images. These images are acquired in two ranges of the electromagnetic spectrum, i.e., microwaves and optical spectral range, obtained from Sentinel-1 and Sentinel-2, respectively. Models are defined with a multiple linear regression method using all combinations of the independent  variables correlated with production. The best linear regression model has a prediction error of 57.38 kg/ha (4%). The use of spectral variables, derived from radar vegetation index Cross Ratio (CR) and optical Inverted Red Edge Chlorophyll Index (IRECI), and climatic variables adapted to the crop calendar and climatic conditioning is revealed as an adequate strategy to obtain adjusted models.","PeriodicalId":43626,"journal":{"name":"Revista de Teledeteccion","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Teledeteccion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/raet.2022.15099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 1

Abstract

A precise estimation of agricultural production provides relevant information for upcoming seasons, and helps in the assessment of crop losses before harvest in case of adverse situations. The objective of this work is to explore the development of a model capable of estimating barley production of a small agricultural production (127 ha) in Belchite, Spain. Variables adapted to the crop calendar of the growing barley are used to achieve that purpose. The variables have been created with weather data and remote sensing images. These images are acquired in two ranges of the electromagnetic spectrum, i.e., microwaves and optical spectral range, obtained from Sentinel-1 and Sentinel-2, respectively. Models are defined with a multiple linear regression method using all combinations of the independent  variables correlated with production. The best linear regression model has a prediction error of 57.38 kg/ha (4%). The use of spectral variables, derived from radar vegetation index Cross Ratio (CR) and optical Inverted Red Edge Chlorophyll Index (IRECI), and climatic variables adapted to the crop calendar and climatic conditioning is revealed as an adequate strategy to obtain adjusted models.
根据Sentinel-1、Sentinel-2图像和气候变量估计大麦产量
对农业产量的精确估计为即将到来的季节提供了相关信息,并有助于在不利情况下收获前评估作物损失。这项工作的目的是探索开发一个能够估计西班牙Belchite小型农业生产(127公顷)大麦产量的模型。为了实现这一目的,使用了适应大麦生长的作物日历的变量。这些变量是根据天气数据和遥感图像创建的。这些图像分别在Sentinel-1和Sentinel-2的微波和光谱两个电磁波谱范围内获取。采用与产量相关的所有自变量的组合,用多元线性回归方法定义模型。最佳线性回归模型的预测误差为57.38 kg/ha(4%)。利用雷达植被指数交叉比(CR)和光学倒红边叶绿素指数(IRECI)衍生的光谱变量,以及适应作物日历和气候条件的气候变量,是获得调整模型的适当策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revista de Teledeteccion
Revista de Teledeteccion REMOTE SENSING-
CiteScore
1.80
自引率
14.30%
发文量
11
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信