{"title":"Fluctuations of the Magnetization for Ising models on Erdős-Rényi random graphs – the regimes of low temperature and external magnetic field","authors":"Z. Kabluchko, Matthias Lowe, K. Schubert","doi":"10.30757/alea.v19-21","DOIUrl":null,"url":null,"abstract":"We continue our analysis of Ising models on the (directed) Erdős-Renyi random graph $G(N,p)$. We prove a quenched Central Limit Theorem for the magnetization and describe the fluctuations of the log-partition function. In the current note we consider the low temperature regime $\\beta>1$ and the case when an external magnetic field is present. In both cases, we assume that $p=p(N)$ satisfies $p^3N \\to \\infty$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.30757/alea.v19-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We continue our analysis of Ising models on the (directed) Erdős-Renyi random graph $G(N,p)$. We prove a quenched Central Limit Theorem for the magnetization and describe the fluctuations of the log-partition function. In the current note we consider the low temperature regime $\beta>1$ and the case when an external magnetic field is present. In both cases, we assume that $p=p(N)$ satisfies $p^3N \to \infty$.