A semi-analytical solutions of fractional Riccati's differential equation via singular and non-singular operators

IF 0.4 Q4 MATHEMATICS
Mohammad Adabitabar Firozja, B. Agheli
{"title":"A semi-analytical solutions of fractional Riccati's differential equation via singular and non-singular operators","authors":"Mohammad Adabitabar Firozja, B. Agheli","doi":"10.30495/JME.V15I0.1917","DOIUrl":null,"url":null,"abstract":"Looking for offer a solution of the  Riccati's differential equations of fractional order (FRDEs) involving Caputo derivative (CD), Caputo-Fabrizio derivative (CFD) or Atangana-Baleanu  derivative (ABD) in this comparative research is based on  a semi-analytical iterative approach. Temimi and  Ansari  introduced this method and called it  TAM. The comparison of the time used in minutes is given for three derivatives  CD,  CFD  and  ABD. Meanwhile, the comparison of the approximate solutions with  CD, CFD and ABD  are presented. Regarding the help of the  software  Mathematica, all the results have been obtained and the calculations have been done.","PeriodicalId":43745,"journal":{"name":"Journal of Mathematical Extension","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Extension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30495/JME.V15I0.1917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Looking for offer a solution of the  Riccati's differential equations of fractional order (FRDEs) involving Caputo derivative (CD), Caputo-Fabrizio derivative (CFD) or Atangana-Baleanu  derivative (ABD) in this comparative research is based on  a semi-analytical iterative approach. Temimi and  Ansari  introduced this method and called it  TAM. The comparison of the time used in minutes is given for three derivatives  CD,  CFD  and  ABD. Meanwhile, the comparison of the approximate solutions with  CD, CFD and ABD  are presented. Regarding the help of the  software  Mathematica, all the results have been obtained and the calculations have been done.
分数阶Riccati微分方程的奇异算子和非奇异算子半解析解
本比较研究采用半解析迭代法寻找分数阶Riccati微分方程(FRDEs)的Caputo导数(CD)、Caputo- fabrizio导数(CFD)或Atangana-Baleanu导数(ABD)的解。Temimi和Ansari介绍了这种方法,并称之为TAM。比较了三种衍生工具的时间(以分钟为单位),分别是CD、CFD和ABD。同时,将近似解与CD、CFD和ABD进行了比较。在Mathematica软件的帮助下,得到了所有的结果并进行了计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
68
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信