Joint numerical ranges: recent advances and applications minicourse by V. Müller and Yu. Tomilov

IF 0.3 Q4 MATHEMATICS
V. Müller, Y. Tomilov
{"title":"Joint numerical ranges: recent advances and applications minicourse by V. Müller and Yu. Tomilov","authors":"V. Müller, Y. Tomilov","doi":"10.1515/conop-2020-0102","DOIUrl":null,"url":null,"abstract":"Abstract We present a survey of some recent results concerning joint numerical ranges of n-tuples of Hilbert space operators, accompanied with several new observations and remarks. Thereafter, numerical ranges techniques will be applied to various problems of operator theory. In particular, we discuss problems concerning orbits of operators, diagonals of operators and their tuples, and pinching problems. Lastly, motivated by known results on the numerical radius of a single operator, we examine whether, given bounded linear operators T1, . . ., Tn on a Hilbert space H, there exists a unit vector x ∈ H such that |〈Tjx, x〉| is “large” for all j = 1, . . . , n.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":"7 1","pages":"133 - 154"},"PeriodicalIF":0.3000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/conop-2020-0102","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2020-0102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract We present a survey of some recent results concerning joint numerical ranges of n-tuples of Hilbert space operators, accompanied with several new observations and remarks. Thereafter, numerical ranges techniques will be applied to various problems of operator theory. In particular, we discuss problems concerning orbits of operators, diagonals of operators and their tuples, and pinching problems. Lastly, motivated by known results on the numerical radius of a single operator, we examine whether, given bounded linear operators T1, . . ., Tn on a Hilbert space H, there exists a unit vector x ∈ H such that |〈Tjx, x〉| is “large” for all j = 1, . . . , n.
联合数值范围:V.Müller和Yu的微型课程的最新进展和应用。托米洛夫
摘要本文综述了最近关于Hilbert空间算子n元组联合数值范围的一些结果,并给出了一些新的观察和注释。此后,数值范围技术将应用于算子理论的各种问题。特别地,我们讨论了算子的轨道问题,算子的对角线及其元组问题,以及捏紧问题。最后,根据关于单个算子数值半径的已知结果,我们检验了在Hilbert空间H上,给定有界线性算子T1,…,Tn,是否存在一个单位向量x∈H,使得| < Tjx, x > |对于所有j = 1,…都是“大”的。, n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Concrete Operators
Concrete Operators MATHEMATICS-
CiteScore
1.00
自引率
16.70%
发文量
10
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信