Biogeodiversity and pedodiversity islands in arid lands of Europe (Almería Province, Spain)

IF 2 Q3 SOIL SCIENCE
J. Ibáñez, R. Pérez-Gómez, C. Oyonarte, A. Zinck
{"title":"Biogeodiversity and pedodiversity islands in arid lands of Europe (Almería Province, Spain)","authors":"J. Ibáñez, R. Pérez-Gómez, C. Oyonarte, A. Zinck","doi":"10.3232/SJSS.2019.V9.N3.01","DOIUrl":null,"url":null,"abstract":"Plant and soil landscapes across bioclimatic belts and drainage basins were studied using georeferenced databases in arid lands of SE Spain, the driest area of Europe. The syntaxonomic system was used to analyze phytocenoses and bioclimatic belts, as well as the concept of potential natural vegetation (PNV), a common approach in many countries of continental Europe. Soil types included in pedological databases were classified using the World Reference Base for Soil Resources international system (FAO 1998). Both bioclimatic belts and drainage basins effectively discriminate soil and plant assemblages in the study area of the Almeria province. The syntaxonomic perspective permits distinguishing between PNV dependent on (i) climate (climatophylous), (ii) climate and lithology, and (iii) soils (edaphophylous). Richness-area relationships of plant and soil assemblages fit well to power law distributions, showing few idiosyncratic differences. PNV, lithological associations, and soil richness are clearly correlated with the area of each climatic beltand watershed. PNV and pedotaxa richness (understood as a number of taxa at a given hierarchical level) increases from the mountain tops to the coastal lands. Around 59% of the PNV units are edaphophylous and 87% of these are edaphohygrophylous that require water supply or tolerate water excess in riverbed ramblas (dry watercourses). Edaphohygrophylous PNV are distributed in small patches within a very arid matrix. They can be considered as plant “biodiversity islands”, a concept different from that of “fertility islands” used by ecologists in arid land studies. The spatial dispersion of these phytocenoses prevents adequate preservation in the frame of conservation biology policies. At landscape level, the extent of plant communities is as follows: PNV climate dependent > PNV climate-lithology dependent > PNV soil dependent. The diversity of plant communities follows an opposite trend: PNV soil dependent > PNV climate-lithology dependent > PNV climate dependent. The PNV most conditioned by soil properties are located along the streambeds of ramblas. These fluvial sediments are not reported as soil materials in soil maps. PNV, soils and lithological associations by drainage basins conform to the predictions of the statistical tool termed nested subsets theory. However, lithological associations by climatic belts depart from this spatial pattern. ","PeriodicalId":43464,"journal":{"name":"Spanish Journal of Soil Science","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spanish Journal of Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3232/SJSS.2019.V9.N3.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Plant and soil landscapes across bioclimatic belts and drainage basins were studied using georeferenced databases in arid lands of SE Spain, the driest area of Europe. The syntaxonomic system was used to analyze phytocenoses and bioclimatic belts, as well as the concept of potential natural vegetation (PNV), a common approach in many countries of continental Europe. Soil types included in pedological databases were classified using the World Reference Base for Soil Resources international system (FAO 1998). Both bioclimatic belts and drainage basins effectively discriminate soil and plant assemblages in the study area of the Almeria province. The syntaxonomic perspective permits distinguishing between PNV dependent on (i) climate (climatophylous), (ii) climate and lithology, and (iii) soils (edaphophylous). Richness-area relationships of plant and soil assemblages fit well to power law distributions, showing few idiosyncratic differences. PNV, lithological associations, and soil richness are clearly correlated with the area of each climatic beltand watershed. PNV and pedotaxa richness (understood as a number of taxa at a given hierarchical level) increases from the mountain tops to the coastal lands. Around 59% of the PNV units are edaphophylous and 87% of these are edaphohygrophylous that require water supply or tolerate water excess in riverbed ramblas (dry watercourses). Edaphohygrophylous PNV are distributed in small patches within a very arid matrix. They can be considered as plant “biodiversity islands”, a concept different from that of “fertility islands” used by ecologists in arid land studies. The spatial dispersion of these phytocenoses prevents adequate preservation in the frame of conservation biology policies. At landscape level, the extent of plant communities is as follows: PNV climate dependent > PNV climate-lithology dependent > PNV soil dependent. The diversity of plant communities follows an opposite trend: PNV soil dependent > PNV climate-lithology dependent > PNV climate dependent. The PNV most conditioned by soil properties are located along the streambeds of ramblas. These fluvial sediments are not reported as soil materials in soil maps. PNV, soils and lithological associations by drainage basins conform to the predictions of the statistical tool termed nested subsets theory. However, lithological associations by climatic belts depart from this spatial pattern. 
欧洲干旱地区的生物地质多样性和土壤多样性岛(Almería省,西班牙)
在欧洲最干旱的西班牙东南部干旱地区,使用地理参考数据库研究了生物气候带和流域的植物和土壤景观。该系统用于分析植物群落和生物气候带,以及潜在自然植被(PNV)的概念,这是欧洲大陆许多国家的常用方法。土壤学数据库中的土壤类型是使用世界土壤资源参考基地国际系统(粮农组织,1998年)进行分类的。阿尔梅里亚省研究区的生物气候带和流域有效地区分了土壤和植物组合。句法组学观点允许区分依赖于(i)气候(气候成因)、(ii)气候和岩性以及(iii)土壤(土壤成因)的PNV。植物和土壤组合的丰富度-面积关系符合幂律分布,几乎没有特殊差异。PNV、岩性组合和土壤丰富度与每个气候带和流域的面积明显相关。PNV和土壤分类群的丰富度(被理解为给定层次上的许多分类群)从山顶到沿海地区都在增加。大约59%的PNV单元是对土壤敏感的,其中87%是对土壤潮湿敏感的,需要供水或耐受河床冲压(干燥水道)中的过量水。在非常干旱的基质中,营养型PNV呈小块分布。它们可以被视为植物“生物多样性岛”,这一概念与生态学家在干旱土地研究中使用的“生育岛”不同。这些植物cenoses的空间分散阻碍了在保护生物学政策框架内的充分保护。在景观水平上,植物群落的程度为:PNV气候依赖性>PNV气候岩性依赖性>PN V土壤依赖性。植物群落多样性呈相反的趋势:PNV土壤依赖性>PNV气候岩性依赖性>PNV气候依赖性。受土壤性质影响最大的PNV位于ramblas的河床上。这些河流沉积物在土壤图中没有作为土壤材料进行报告。PNV、土壤和流域岩性组合符合称为嵌套子集理论的统计工具的预测。然而,气候带的岩性组合偏离了这种空间模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
13
期刊介绍: The Spanish Journal of Soil Science (SJSS) is a peer-reviewed journal with open access for the publication of Soil Science research, which is published every four months. This publication welcomes works from all parts of the world and different geographic areas. It aims to publish original, innovative, and high-quality scientific papers related to field and laboratory research on all basic and applied aspects of Soil Science. The journal is also interested in interdisciplinary studies linked to soil research, short communications presenting new findings and applications, and invited state of art reviews. The journal focuses on all the different areas of Soil Science represented by the Spanish Society of Soil Science: soil genesis, morphology and micromorphology, physics, chemistry, biology, mineralogy, biochemistry and its functions, classification, survey, and soil information systems; soil fertility and plant nutrition, hydrology and geomorphology; soil evaluation and land use planning; soil protection and conservation; soil degradation and remediation; soil quality; soil-plant relationships; soils and land use change; sustainability of ecosystems; soils and environmental quality; methods of soil analysis; pedometrics; new techniques and soil education. Other fields with growing interest include: digital soil mapping, soil nanotechnology, the modelling of biological and biochemical processes, mechanisms and processes responsible for the mobilization and immobilization of nutrients, organic matter stabilization, biogeochemical nutrient cycles, the influence of climatic change on soil processes and soil-plant relationships, carbon sequestration, and the role of soils in climatic change and ecological and environmental processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信