The Fermat-Torricelli problem in the projective plane

IF 0.3 4区 数学 Q4 MATHEMATICS
M. Tsakiris, Sihang Xu
{"title":"The Fermat-Torricelli problem in the projective plane","authors":"M. Tsakiris, Sihang Xu","doi":"10.7146/math.scand.a-133419","DOIUrl":null,"url":null,"abstract":"We pose and study the Fermat-Torricelli problem for a triangle in the projective plane under the sine distance. Our main finding is that if every side of the triangle has length greater than $\\sin 60^\\circ $, then the Fermat-Torricelli point is the vertex opposite the longest side. Our proof relies on a complete characterization of the equilateral case together with a deformation argument.","PeriodicalId":49873,"journal":{"name":"Mathematica Scandinavica","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Scandinavica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-133419","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We pose and study the Fermat-Torricelli problem for a triangle in the projective plane under the sine distance. Our main finding is that if every side of the triangle has length greater than $\sin 60^\circ $, then the Fermat-Torricelli point is the vertex opposite the longest side. Our proof relies on a complete characterization of the equilateral case together with a deformation argument.
投影平面上的Fermat-Torricelli问题
我们提出并研究了正弦距离下投影平面上三角形的费马-托里拆利问题。我们的主要发现是,如果三角形的每条边的长度都大于sin60 ^ circ,那么费马-托里切利点就是最长边对面的顶点。我们的证明依赖于对等边情况的完整描述以及变形论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematica Scandinavica
Mathematica Scandinavica 数学-数学
CiteScore
0.60
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: Mathematica Scandinavica is a peer-reviewed journal in mathematics that has been published regularly since 1953. Mathematica Scandinavica is run on a non-profit basis by the five mathematical societies in Scandinavia. It is the aim of the journal to publish high quality mathematical articles of moderate length. Mathematica Scandinavica publishes about 640 pages per year. For 2020, these will be published as one volume consisting of 3 issues (of 160, 240 and 240 pages, respectively), enabling a slight increase in article pages compared to previous years. The journal aims to publish the first issue by the end of March. Subsequent issues will follow at intervals of approximately 4 months. All back volumes are available in paper and online from 1953. There is free access to online articles more than five years old.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信