Koopman mode analysis on thermal data for building energy assessment

IF 2.1 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
Ljuboslav Boskic, Cory N. Brown, I. Mezić
{"title":"Koopman mode analysis on thermal data for building energy assessment","authors":"Ljuboslav Boskic, Cory N. Brown, I. Mezić","doi":"10.1080/17512549.2020.1842802","DOIUrl":null,"url":null,"abstract":"ABSTRACT Current approaches to thermal control and energy management in residential and office buildings rely on complex or high-dimensional thermal models. We provide a means to extract features from in-office thermal-data sensors which avoid the use of standard models. We develop these data-driven methods through the use of Koopman operator theory. We validate our resulting algorithms via analysing thermal data from a single thermal zone space. The particular advantage of the method is that it associates the temporal characteristics of control mechanisms with the corresponding spatial zones of influence. The methodology enables identification of spatial heating and cooling control modes directly from the data.","PeriodicalId":46184,"journal":{"name":"Advances in Building Energy Research","volume":"16 1","pages":"281 - 295"},"PeriodicalIF":2.1000,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17512549.2020.1842802","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Building Energy Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17512549.2020.1842802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

ABSTRACT Current approaches to thermal control and energy management in residential and office buildings rely on complex or high-dimensional thermal models. We provide a means to extract features from in-office thermal-data sensors which avoid the use of standard models. We develop these data-driven methods through the use of Koopman operator theory. We validate our resulting algorithms via analysing thermal data from a single thermal zone space. The particular advantage of the method is that it associates the temporal characteristics of control mechanisms with the corresponding spatial zones of influence. The methodology enables identification of spatial heating and cooling control modes directly from the data.
建筑节能评价中热数据的Koopman模式分析
当前住宅和办公建筑的热控制和能源管理方法依赖于复杂或高维的热模型。我们提供了一种从办公室热数据传感器中提取特征的方法,避免了使用标准模型。我们通过使用Koopman算子理论来开发这些数据驱动方法。我们通过分析单个热区空间的热数据来验证我们的结果算法。该方法的特别优点是,它将控制机制的时间特征与相应的空间影响区联系起来。该方法可以直接从数据中识别空间加热和冷却控制模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Building Energy Research
Advances in Building Energy Research CONSTRUCTION & BUILDING TECHNOLOGY-
CiteScore
4.80
自引率
5.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信