Quasi-Lie bialgebras of loops in quasisurfaces

Pub Date : 2020-01-07 DOI:10.1215/21562261-2022-0034
V. Turaev
{"title":"Quasi-Lie bialgebras of loops in quasisurfaces","authors":"V. Turaev","doi":"10.1215/21562261-2022-0034","DOIUrl":null,"url":null,"abstract":"We discuss natural operations on loops in a quasi-surface and show that these operations define a structure of a quasi-Lie bialgebra in the module generated by the set of free homotopy classes of non-contractible loops.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2022-0034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We discuss natural operations on loops in a quasi-surface and show that these operations define a structure of a quasi-Lie bialgebra in the module generated by the set of free homotopy classes of non-contractible loops.
分享
查看原文
准曲面上环的拟李双代数
我们讨论了拟曲面上环的自然运算,并证明了这些运算定义了由不可压缩环的自由同伦类集生成的模中的拟李双代数的一个结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信