Arched beams of Bresse type: New thermal couplings and pattern of stability

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
G.E. Bittencourt Moraes, S.J. de Camargo, M.A. Jorge Silva
{"title":"Arched beams of Bresse type: New thermal couplings and pattern of stability","authors":"G.E. Bittencourt Moraes, S.J. de Camargo, M.A. Jorge Silva","doi":"10.3233/asy-231850","DOIUrl":null,"url":null,"abstract":"This is the second paper of a trilogy intended by the authors in what concerns a unified approach to the stability of thermoelastic arched beams of Bresse type under Fourier’s law. Differently of the first one, where the thermal couplings are regarded on the axial and bending displacements, here the thermal couplings are taken over the shear and bending forces. Such thermal effects still result in a new prototype of partially damped Bresse system whose stability results demand a proper approach. Combining a novel path of local estimates by means of the resolvent equation along with a control-observability analysis developed for elastic non-homogeneous systems of Bresse type proposed in trilogy’s first paper, we are able to provide a unified methodology of the asymptotic stability results, by proving the pattern of them with respect to boundary conditions and the action of temperature couplings, which is in compliance with our previous and present goal.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-231850","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

This is the second paper of a trilogy intended by the authors in what concerns a unified approach to the stability of thermoelastic arched beams of Bresse type under Fourier’s law. Differently of the first one, where the thermal couplings are regarded on the axial and bending displacements, here the thermal couplings are taken over the shear and bending forces. Such thermal effects still result in a new prototype of partially damped Bresse system whose stability results demand a proper approach. Combining a novel path of local estimates by means of the resolvent equation along with a control-observability analysis developed for elastic non-homogeneous systems of Bresse type proposed in trilogy’s first paper, we are able to provide a unified methodology of the asymptotic stability results, by proving the pattern of them with respect to boundary conditions and the action of temperature couplings, which is in compliance with our previous and present goal.
Bresse型拱形梁:新型热耦合和稳定性模式
这是作者打算在傅立叶定律下对Bresse型热弹性拱形梁的稳定性进行统一研究的三部曲中的第二篇论文。与第一种不同,在第一种情况下,热耦合被视为轴向位移和弯曲位移,在这里,热耦合接管剪切力和弯曲力。这种热效应仍然导致部分阻尼Bresse系统的新原型,其稳定性结果需要一种适当的方法。结合trilogy第一篇论文中提出的Bresse型弹性非齐次系统的一种新的局部估计路径和控制可观测性分析,我们能够提供渐近稳定性结果的统一方法,通过证明它们关于边界条件和温度耦合作用的模式,这符合我们以前和现在的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信