A new generalization of t-lifting modules

Q4 Mathematics
Y. Talebi, A. R. M. Hamzekolaee, M. Hosseinpour, S. Asgari
{"title":"A new generalization of t-lifting modules","authors":"Y. Talebi, A. R. M. Hamzekolaee, M. Hosseinpour, S. Asgari","doi":"10.22124/JART.2020.16482.1203","DOIUrl":null,"url":null,"abstract":"In this paper we introduce the concept of $tCC$-modu-les which is a proper generalizationof ($t$-)lifting modules. Let $M$ be a module over a ring $R$.We call $M$ a $tCC$-module(related to $t$-coclosed submodules) provided that for every$t$-coclosed submodule $N$ of $M$, there exists a direct summand $K$ of $M$such that $M=N+K$ and $Ncap Kll K$.We prove that a module with $(D_3)$ property is $tCC$if and only if every direct summand of $M$ is $tCC$. It is also shownthat an amply supplemented module $M$ is $tCC$ if and only if $M$ decomposed to$overline{Z}^2(M)$ and a submodule $L$ of $M$ that both of them are $tCC$.","PeriodicalId":52302,"journal":{"name":"Journal of Algebra and Related Topics","volume":"8 1","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22124/JART.2020.16482.1203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we introduce the concept of $tCC$-modu-les which is a proper generalizationof ($t$-)lifting modules. Let $M$ be a module over a ring $R$.We call $M$ a $tCC$-module(related to $t$-coclosed submodules) provided that for every$t$-coclosed submodule $N$ of $M$, there exists a direct summand $K$ of $M$such that $M=N+K$ and $Ncap Kll K$.We prove that a module with $(D_3)$ property is $tCC$if and only if every direct summand of $M$ is $tCC$. It is also shownthat an amply supplemented module $M$ is $tCC$ if and only if $M$ decomposed to$overline{Z}^2(M)$ and a submodule $L$ of $M$ that both of them are $tCC$.
t-提升模的一个新推广
在本文中,我们引入了$tCC$-modu-les的概念,它是($t$-)提升模的适当推广。设$M$是环$R$上的一个模。我们称$M$为$tCC$-模(与$t$-coclosed子模有关),条件是对于$M$的每一个$t$-coclosed子模块$N$,都存在一个$M$直和$K$,使得$M=N+K$和$Ncap-Kli-K$。还证明了充分补充模$M$是$tCC$当且仅当$M$分解为$overline{Z}^2(M)$和$M$的子模$L$时,它们都是$tCC$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra and Related Topics
Journal of Algebra and Related Topics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信