{"title":"KnowER: Knowledge enhancement for efficient text-video retrieval","authors":"Hongwei Kou;Yingyun Yang;Yan Hua","doi":"10.23919/ICN.2023.0009","DOIUrl":null,"url":null,"abstract":"The widespread adoption of mobile Internet and the Internet of things (IoT) has led to a significant increase in the amount of video data. While video data are increasingly important, language and text remain the primary methods of interaction in everyday communication, text-based cross-modal retrieval has become a crucial demand in many applications. Most previous text-video retrieval works utilize implicit knowledge of pre-trained models such as contrastive language-image pre-training (CLIP) to boost retrieval performance. However, implicit knowledge only records the co-occurrence relationship existing in the data, and it cannot assist the model to understand specific words or scenes. Another type of out-of-domain knowledge—explicit knowledge—which is usually in the form of a knowledge graph, can play an auxiliary role in understanding the content of different modalities. Therefore, we study the application of external knowledge base in text-video retrieval model for the first time, and propose KnowER, a model based on knowledge enhancement for efficient text-video retrieval. The knowledge-enhanced model achieves state-of-the-art performance on three widely used text-video retrieval datasets, i.e., MSRVTT, DiDeMo, and MSVD.","PeriodicalId":100681,"journal":{"name":"Intelligent and Converged Networks","volume":"4 2","pages":"93-105"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9195266/10207889/10208200.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent and Converged Networks","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10208200/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The widespread adoption of mobile Internet and the Internet of things (IoT) has led to a significant increase in the amount of video data. While video data are increasingly important, language and text remain the primary methods of interaction in everyday communication, text-based cross-modal retrieval has become a crucial demand in many applications. Most previous text-video retrieval works utilize implicit knowledge of pre-trained models such as contrastive language-image pre-training (CLIP) to boost retrieval performance. However, implicit knowledge only records the co-occurrence relationship existing in the data, and it cannot assist the model to understand specific words or scenes. Another type of out-of-domain knowledge—explicit knowledge—which is usually in the form of a knowledge graph, can play an auxiliary role in understanding the content of different modalities. Therefore, we study the application of external knowledge base in text-video retrieval model for the first time, and propose KnowER, a model based on knowledge enhancement for efficient text-video retrieval. The knowledge-enhanced model achieves state-of-the-art performance on three widely used text-video retrieval datasets, i.e., MSRVTT, DiDeMo, and MSVD.