Maschinelle Lernverfahren zur Prognose von Tierwohlrisiken in der Schweinehaltung

Q4 Agricultural and Biological Sciences
Landtechnik Pub Date : 2021-03-11 DOI:10.15150/LT.2021.3261
Tobias Zimpel, Martin Riekert, Achim Klein, C. Hoffmann
{"title":"Maschinelle Lernverfahren zur Prognose von Tierwohlrisiken in der Schweinehaltung","authors":"Tobias Zimpel, Martin Riekert, Achim Klein, C. Hoffmann","doi":"10.15150/LT.2021.3261","DOIUrl":null,"url":null,"abstract":"Animal welfare is a quality indicator of modern pig farming and increasingly important to society. Animal welfare risks have multiple factors and should be recognized and mitigated early on to prevent economic risks. In this work, we use machine learning models to predict animal welfare risks. Our dataset comprises data for over 57,000 pigs with indications of 10 animal welfare risks and 14 suckling phase features. We contribute a prediction model for suckling phase deaths with an accuracy of 80.4% – providing a sizeable improvement over a majority vote‘s accuracy of only 53.1%. The proposed model may help pig farmers to prevent deaths in the suckling phase of pigs at an early stage by taking countermeasure","PeriodicalId":35524,"journal":{"name":"Landtechnik","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Landtechnik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15150/LT.2021.3261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Animal welfare is a quality indicator of modern pig farming and increasingly important to society. Animal welfare risks have multiple factors and should be recognized and mitigated early on to prevent economic risks. In this work, we use machine learning models to predict animal welfare risks. Our dataset comprises data for over 57,000 pigs with indications of 10 animal welfare risks and 14 suckling phase features. We contribute a prediction model for suckling phase deaths with an accuracy of 80.4% – providing a sizeable improvement over a majority vote‘s accuracy of only 53.1%. The proposed model may help pig farmers to prevent deaths in the suckling phase of pigs at an early stage by taking countermeasure
预测养猪业动物福利风险的机器学习方法
动物福利是现代养猪业的质量指标,对社会越来越重要。动物福利风险有多种因素,应及早认识和减轻,以防止经济风险。在这项工作中,我们使用机器学习模型来预测动物福利风险。我们的数据集包括超过57,000头猪的数据,其中包括10种动物福利风险和14种哺乳期特征。我们提供了一个哺乳期死亡的预测模型,准确率为80.4%,比多数投票的准确率只有53.1%有了很大的提高。提出的模型可以帮助养猪户采取对策,在哺乳阶段早期预防猪的死亡
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Landtechnik
Landtechnik Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
1.10
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信