{"title":"The strategies for widening processing windows for perovskite solar cells: a mini review on the role of solvent/antisolvent","authors":"Cong Chen, Jinwei Gao, S. Feng","doi":"10.1080/09506608.2022.2077030","DOIUrl":null,"url":null,"abstract":"ABSTRACT Perovskite solar cells are promising candidates for next-generation photovoltaic devices with certified power-conversion efficiency for single-junction perovskite-based devices exceeded 25%. However, it remains challenging to fabricate a large-area and dense perovskite film using solution-based deposition methods. This is due to perovskite wet films being highly sensitive and unstable, and thus having only a narrow processing window. There is therefore a demand for ways to expand the processing window in the fabrication of perovskite films. Herein, we systematically review research on the role of precursor solutions and antisolvents during the perovskite formation process, and reveal the fundamental factors governing the width of the perovskite film-processing window. Then, we give an overview of current strategies for enlarging the processing window, which includes solvent and antisolvent engineering strategies. We conclude by summarizing current challenges in the development of perovskite solar modules with a wide processing window and provide perspectives for future development.","PeriodicalId":14427,"journal":{"name":"International Materials Reviews","volume":"68 1","pages":"301 - 322"},"PeriodicalIF":16.8000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Materials Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09506608.2022.2077030","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT Perovskite solar cells are promising candidates for next-generation photovoltaic devices with certified power-conversion efficiency for single-junction perovskite-based devices exceeded 25%. However, it remains challenging to fabricate a large-area and dense perovskite film using solution-based deposition methods. This is due to perovskite wet films being highly sensitive and unstable, and thus having only a narrow processing window. There is therefore a demand for ways to expand the processing window in the fabrication of perovskite films. Herein, we systematically review research on the role of precursor solutions and antisolvents during the perovskite formation process, and reveal the fundamental factors governing the width of the perovskite film-processing window. Then, we give an overview of current strategies for enlarging the processing window, which includes solvent and antisolvent engineering strategies. We conclude by summarizing current challenges in the development of perovskite solar modules with a wide processing window and provide perspectives for future development.
期刊介绍:
International Materials Reviews (IMR) is a comprehensive publication that provides in-depth coverage of the current state and advancements in various materials technologies. With contributions from internationally respected experts, IMR offers a thorough analysis of the subject matter. It undergoes rigorous evaluation by committees in the United States and United Kingdom for ensuring the highest quality of content.
Published by Sage on behalf of ASM International and the Institute of Materials, Minerals and Mining (UK), IMR is a valuable resource for professionals in the field. It is available online through Sage's platform, facilitating convenient access to its wealth of information.
Jointly produced by ASM International and the Institute of Materials, Minerals and Mining (UK), IMR focuses on technologies that impact industries dealing with metals, structural ceramics, composite materials, and electronic materials. Its coverage spans from practical applications to theoretical and practical aspects of material extraction, production, fabrication, properties, and behavior.