Conforming finite element method for the time‐fractional nonlinear stochastic fourth‐order reaction diffusion equation

IF 2.1 3区 数学 Q1 MATHEMATICS, APPLIED
Xinfei Liu, Xiaoyuan Yang
{"title":"Conforming finite element method for the time‐fractional nonlinear stochastic fourth‐order reaction diffusion equation","authors":"Xinfei Liu, Xiaoyuan Yang","doi":"10.1002/num.23020","DOIUrl":null,"url":null,"abstract":"The time‐fractional nonlinear stochastic fourth‐order reaction diffusion equation perturbed by the noise is paid close attention by the conforming finite element method in this paper. The semi‐ and fully discrete schemes are obtained. Further, the convergence orders of the semi‐ and fully discrete schemes in L2$$ {L}^2 $$ norm are given detailed proof. The numerical tests are gotten to verify the theoretical result.","PeriodicalId":19443,"journal":{"name":"Numerical Methods for Partial Differential Equations","volume":"39 1","pages":"3657 - 3676"},"PeriodicalIF":2.1000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Methods for Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23020","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The time‐fractional nonlinear stochastic fourth‐order reaction diffusion equation perturbed by the noise is paid close attention by the conforming finite element method in this paper. The semi‐ and fully discrete schemes are obtained. Further, the convergence orders of the semi‐ and fully discrete schemes in L2$$ {L}^2 $$ norm are given detailed proof. The numerical tests are gotten to verify the theoretical result.
时间分数阶非线性随机四阶反应扩散方程的一致性有限元方法
本文用拟合有限元法研究了受噪声扰动的时间分数阶非线性随机四阶反应扩散方程。得到了半离散格式和全离散格式。进一步给出了L2 $$ {L}^2 $$范数下半离散和完全离散格式的收敛阶。通过数值试验对理论结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
2.60%
发文量
81
审稿时长
9 months
期刊介绍: An international journal that aims to cover research into the development and analysis of new methods for the numerical solution of partial differential equations, it is intended that it be readily readable by and directed to a broad spectrum of researchers into numerical methods for partial differential equations throughout science and engineering. The numerical methods and techniques themselves are emphasized rather than the specific applications. The Journal seeks to be interdisciplinary, while retaining the common thread of applied numerical analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信