Classical forms of weight one in ordinary families

IF 0.3 4区 数学 Q4 MATHEMATICS
Eric Stubley
{"title":"Classical forms of weight one in ordinary families","authors":"Eric Stubley","doi":"10.5802/jtnb.1242","DOIUrl":null,"url":null,"abstract":"We develop a new strategy for studying low weight specializations of $p$-adic families of ordinary modular forms. In the elliptic case, we give a new proof of a result of Ghate--Vatsal which states that a Hida family contains infinitely many classical eigenforms of weight one if and only if it has complex multiplication. Our strategy is designed to explicitly avoid use of the related facts that the Galois representation attached to a classical weight one eigenform has finite image, and that classical weight one eigenforms satisfy the Ramanujan conjecture. We indicate how this strategy might be used to prove similar statement in the case of partial weight one Hilbert modular forms, given a suitable development of Hida theory in that setting.","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1242","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

We develop a new strategy for studying low weight specializations of $p$-adic families of ordinary modular forms. In the elliptic case, we give a new proof of a result of Ghate--Vatsal which states that a Hida family contains infinitely many classical eigenforms of weight one if and only if it has complex multiplication. Our strategy is designed to explicitly avoid use of the related facts that the Galois representation attached to a classical weight one eigenform has finite image, and that classical weight one eigenforms satisfy the Ramanujan conjecture. We indicate how this strategy might be used to prove similar statement in the case of partial weight one Hilbert modular forms, given a suitable development of Hida theory in that setting.
在普通家庭中,传统的重量形式是一种
我们提出了一种研究普通模形式的$p$一元族的低权重专门化的新策略。在椭圆情况下,我们给出了Ghate—Vatsal的一个结果的一个新的证明,该结果表明一个Hida族包含无穷多个权为1的经典特征形式,当且仅当它具有复乘法。我们的策略旨在明确地避免使用相关事实,即伽罗瓦表示附加到经典权一特征形式具有有限图像,以及经典权一特征形式满足拉马努金推测。我们指出如何使用这种策略来证明在Hilbert模形式的偏权1的情况下的类似陈述,在这种情况下给出Hida理论的适当发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
35
期刊介绍: The Journal de Théorie des Nombres de Bordeaux publishes original papers on number theory and related topics (not published elsewhere).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信