Origin of V-Cr-Ti-mineralization in thermally overprinted metal-rich black shales from the Teplá-Barrandian Unit (Bohemian Massif) and implications for metal remobilization during metamorphism

IF 1.1 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
F. Veselovský, J. Pašava, O. Pour, L. Ackerman
{"title":"Origin of V-Cr-Ti-mineralization in thermally overprinted metal-rich black shales from the Teplá-Barrandian Unit (Bohemian Massif) and implications for metal remobilization during metamorphism","authors":"F. Veselovský, J. Pašava, O. Pour, L. Ackerman","doi":"10.3190/jgeosci.337","DOIUrl":null,"url":null,"abstract":"We present a detailed study of geochemical composition and ore mineralogy of black shales from Chynín, Czech Republic, representing Ediacaran organic matter-rich sediments, which were subject to regional and contact metamorphism. They are part of the Blovice Accretionaly Complex (BAC) in the Teplá–Barrandian Unit (TBU) and are located close to the contact with the Central Bohemian Pluton (CBP). The black shales were encountered with metasilicites, metabasalts, and basic tuffitic rocks in the CHY-2 drill hole (250 m deep) and are regionally associated with hornfels bodies. The geochemistry of these shales indicates that they correspond to metal-rich black shales deposited under strongly reducing conditions (TOC/Pmolar > 100, high Mo and U values). On the other hand, the lack of a positive link between TOC and redox-sensitive metals (e.g., V, U, Cr, Ni, Mo) and their generally negative correlation with sulfur indicate important late-stage metal and sulfur remobilization. This is reflected in the mineralogical composition of the shales, which documents a thermal event in their history. Abundant framboidal pyrite (pyrite I) was recrystallized into coarse aggregates (pyrite II), locally accompanied by chalcopyrite, sphalerite, and rare molybdenite, pentlandite and breithauptite. Abundant pyrrhotite formed there due to selective desulfurization of pyrite I and II during the contact metamorphism. Locally, this process was also accompanied by the replacement of pyrrhotite by V–Cr–O (karelianite – V2O3 and eskolaite – Cr2O3, mostly with dominant karelianite end-member) and Ti–V–O (vanadium rutile, schreyerite – V2Ti3O9 and a phase with the theoretical composition V4Ti3O12, yet unknown to the mineralogical system). Vanadium–Cr–Ti elemental associations reported from different localities of Neoproterozoic metal-rich black shales, metal-rich black shales, and (meta)silicites in TBU indicate similar sources of these elements but different conditions of their accumulation.","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3190/jgeosci.337","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1

Abstract

We present a detailed study of geochemical composition and ore mineralogy of black shales from Chynín, Czech Republic, representing Ediacaran organic matter-rich sediments, which were subject to regional and contact metamorphism. They are part of the Blovice Accretionaly Complex (BAC) in the Teplá–Barrandian Unit (TBU) and are located close to the contact with the Central Bohemian Pluton (CBP). The black shales were encountered with metasilicites, metabasalts, and basic tuffitic rocks in the CHY-2 drill hole (250 m deep) and are regionally associated with hornfels bodies. The geochemistry of these shales indicates that they correspond to metal-rich black shales deposited under strongly reducing conditions (TOC/Pmolar > 100, high Mo and U values). On the other hand, the lack of a positive link between TOC and redox-sensitive metals (e.g., V, U, Cr, Ni, Mo) and their generally negative correlation with sulfur indicate important late-stage metal and sulfur remobilization. This is reflected in the mineralogical composition of the shales, which documents a thermal event in their history. Abundant framboidal pyrite (pyrite I) was recrystallized into coarse aggregates (pyrite II), locally accompanied by chalcopyrite, sphalerite, and rare molybdenite, pentlandite and breithauptite. Abundant pyrrhotite formed there due to selective desulfurization of pyrite I and II during the contact metamorphism. Locally, this process was also accompanied by the replacement of pyrrhotite by V–Cr–O (karelianite – V2O3 and eskolaite – Cr2O3, mostly with dominant karelianite end-member) and Ti–V–O (vanadium rutile, schreyerite – V2Ti3O9 and a phase with the theoretical composition V4Ti3O12, yet unknown to the mineralogical system). Vanadium–Cr–Ti elemental associations reported from different localities of Neoproterozoic metal-rich black shales, metal-rich black shales, and (meta)silicites in TBU indicate similar sources of these elements but different conditions of their accumulation.
Teplá-Barrandian单元(波西米亚地块)热叠加富金属黑色页岩中V-Cr-Ti矿化的起源以及变质作用期间金属再活化的意义
本文详细研究了捷克Chynín地区黑色页岩的地球化学组成和矿物学特征,该地区为埃迪卡拉纪富有机质沉积,受区域变质作用和接触变质作用影响。它们是Teplá-Barrandian单元(TBU)中的Blovice吸积复合体(BAC)的一部分,位于与中波西米亚岩体(CBP)接触的附近。在250 m深的CHY-2钻孔中,黑色页岩与变质硅质、变质玄武岩和基性凝灰岩相遇,并与角砾体有区域性联系。这些页岩的地球化学特征表明,它们对应于在强还原条件下(TOC/Pmolar bbb100,高Mo和U值)沉积的富金属黑色页岩。另一方面,TOC与氧化还原敏感金属(如V、U、Cr、Ni、Mo)之间缺乏正相关,而它们与硫之间普遍呈负相关,表明后期金属和硫的再活化具有重要意义。这反映在页岩的矿物学组成上,它记录了它们历史上的一个热事件。丰富的草莓状黄铁矿(黄铁矿I)重结晶为粗粒集合体(黄铁矿II),局部伴有黄铜矿、闪锌矿和稀有的辉钼矿、镍黄铁矿和辉钼矿。接触变质作用中,黄铁矿I、II选择性脱硫,形成丰富的磁黄铁矿。局部还伴有磁黄铁矿被V-Cr-O(钾长石- V2O3和矽长石- Cr2O3,主要以钾长石端元为主)和Ti-V-O(钒金红石、石长石- V2Ti3O9和一种理论组成为V4Ti3O12,但矿物学系统未知的相)取代。新元古代富金属黑色页岩、富金属黑色页岩和TBU(元)硅岩不同部位的钒-铬-钛元素组合表明,这些元素的来源相似,但富集条件不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geosciences
Journal of Geosciences GEOSCIENCES, MULTIDISCIPLINARY-MINERALOGY
CiteScore
2.30
自引率
7.10%
发文量
15
审稿时长
>12 weeks
期刊介绍: The Journal of Geosciences is an international peer-reviewed journal published by the Czech Geological Society with support from the Czech Geological Survey. It accepts high-quality original research or review papers dealing with all aspects of the nature and origin of igneous and metamorphic rocks. The Journal focuses, mainly but not exclusively, on: -Process-oriented regional studies of igneous and metamorphic complexes- Research in structural geology and tectonics- Igneous and metamorphic petrology- Mineral chemistry and mineralogy- Major- and trace-element geochemistry, isotope geochemistry- Dating igneous activity and metamorphic events- Experimental petrology and mineralogy- Theoretical models of igneous and metamorphic processes- Mineralizing processes and mineral deposits. All the papers are written in English, even though they may be accompanied by an additional Czech abstract. Each contribution is a subject to peer review by at least two independent reviewers, typically at least one from abroad. The Journal appears 2 to 4 times a year. Formally it is divided in annual volumes, each of them including 4 issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信