Bacterial derived biopolymer to alleviate nutrient stress and yield enhancement in turmeric (Curcuma longa L.) by mediating physiology and rhizosphere microbes on poor soils of semi-arid tropics
C. B. Harisha, K. Meena, J. Rane, H. Halli, Boraiah Karnar Manjanna, B. S. Patil, Amaresh Chaudhary, V. Naik, Ajay M. Sorty
{"title":"Bacterial derived biopolymer to alleviate nutrient stress and yield enhancement in turmeric (Curcuma longa L.) by mediating physiology and rhizosphere microbes on poor soils of semi-arid tropics","authors":"C. B. Harisha, K. Meena, J. Rane, H. Halli, Boraiah Karnar Manjanna, B. S. Patil, Amaresh Chaudhary, V. Naik, Ajay M. Sorty","doi":"10.1080/03650340.2023.2170362","DOIUrl":null,"url":null,"abstract":"ABSTRACT Biopolymers (BP) are the unexploited eco–friendly microbial derivatives which regulate soil moisture and nutrient mobility. Therefore, a field experiment was conducted for two years (2017–18 and 2018–19) to determine the beneficial effects of BP in reducing nutrient stress and yield enhancement in turmeric. The study was laid out in a split-plot design with each of four levels of nutrients (control, 50%, 75%, and 100% of Recommended Dose of Nutrients; RDN) and BP (0, 2.5, 5.0, and 7.5 kg ha–1). Results indicated that BP application (7.5 kg ha–1) significantly improved the soil moisture content (40.31%) and microbial colonization (total microbes, N fixers, and P solubilizers). As a result, combined application BP with either 75% or 100% of RDN enhanced the photosynthesis (22.95–24.50 μmol m−2 s−1) and lowered the canopy temperature (24.47–24.67°C) of turmeric. Thus, higher yield (7.05–7.82 t ha−1) and partial factor productivity were achieved. Supplementing BP with 100% RDN enhances the turmeric yield by up to 29–49% over 100% RDN alone. Therefore, biopolymer maintains the equivalent turmeric yield of 100% RDN even at 25–50% less nutrients in the nutrient-poor soils of semi-arid Tropics.","PeriodicalId":8154,"journal":{"name":"Archives of Agronomy and Soil Science","volume":"69 1","pages":"2645 - 2662"},"PeriodicalIF":2.3000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Agronomy and Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/03650340.2023.2170362","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Biopolymers (BP) are the unexploited eco–friendly microbial derivatives which regulate soil moisture and nutrient mobility. Therefore, a field experiment was conducted for two years (2017–18 and 2018–19) to determine the beneficial effects of BP in reducing nutrient stress and yield enhancement in turmeric. The study was laid out in a split-plot design with each of four levels of nutrients (control, 50%, 75%, and 100% of Recommended Dose of Nutrients; RDN) and BP (0, 2.5, 5.0, and 7.5 kg ha–1). Results indicated that BP application (7.5 kg ha–1) significantly improved the soil moisture content (40.31%) and microbial colonization (total microbes, N fixers, and P solubilizers). As a result, combined application BP with either 75% or 100% of RDN enhanced the photosynthesis (22.95–24.50 μmol m−2 s−1) and lowered the canopy temperature (24.47–24.67°C) of turmeric. Thus, higher yield (7.05–7.82 t ha−1) and partial factor productivity were achieved. Supplementing BP with 100% RDN enhances the turmeric yield by up to 29–49% over 100% RDN alone. Therefore, biopolymer maintains the equivalent turmeric yield of 100% RDN even at 25–50% less nutrients in the nutrient-poor soils of semi-arid Tropics.
期刊介绍:
rchives of Agronomy and Soil Science is a well-established journal that has been in publication for over fifty years. The Journal publishes papers over the entire range of agronomy and soil science. Manuscripts involved in developing and testing hypotheses to understand casual relationships in the following areas:
plant nutrition
fertilizers
manure
soil tillage
soil biotechnology and ecophysiology
amelioration
irrigation and drainage
plant production on arable and grass land
agroclimatology
landscape formation and environmental management in rural regions
management of natural and created wetland ecosystems
bio-geochemical processes
soil-plant-microbe interactions and rhizosphere processes
soil morphology, classification, monitoring, heterogeneity and scales
reuse of waste waters and biosolids of agri-industrial origin in soil are especially encouraged.
As well as original contributions, the Journal also publishes current reviews.