Harvesting optimization with stochastic differential equations models: is the optimal enemy of the good?

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
N. Brites, C. Braumann
{"title":"Harvesting optimization with stochastic differential equations models: is the optimal enemy of the good?","authors":"N. Brites, C. Braumann","doi":"10.1080/15326349.2021.2006066","DOIUrl":null,"url":null,"abstract":"Abstract We can describe the size evolution of a harvested population in a randomly varying environment using stochastic differential equations. Previously, we have compared the profit performance of four harvesting policies: (i) optimal variable effort policy, based on variable effort; (ii) optimal penalized variable effort policies, penalized versions based on including an artificial running energy cost on the effort; (iii) stepwise policies, staircase versions where the harvesting effort is determined at the beginning of each year (or of each biennium) and kept constant throughout that year (or biennium); (iv) constant harvesting effort sustainable policy, based on constant effort. They have different properties, so it is also worth looking at combinations of such policies and studying the single and cross-effects of the amount of penalization, the absence or presence and type of steps, and the restraints on minimum and maximum allowed efforts. Using data based on a real harvested population and considering a logistic growth model, we perform such a comparison study of pure and mixed policies in terms of profit, applicability, and other relevant properties. We end up answering the question: is the optimal enemy of the good?","PeriodicalId":21970,"journal":{"name":"Stochastic Models","volume":"39 1","pages":"41 - 59"},"PeriodicalIF":0.5000,"publicationDate":"2021-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Models","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/15326349.2021.2006066","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract We can describe the size evolution of a harvested population in a randomly varying environment using stochastic differential equations. Previously, we have compared the profit performance of four harvesting policies: (i) optimal variable effort policy, based on variable effort; (ii) optimal penalized variable effort policies, penalized versions based on including an artificial running energy cost on the effort; (iii) stepwise policies, staircase versions where the harvesting effort is determined at the beginning of each year (or of each biennium) and kept constant throughout that year (or biennium); (iv) constant harvesting effort sustainable policy, based on constant effort. They have different properties, so it is also worth looking at combinations of such policies and studying the single and cross-effects of the amount of penalization, the absence or presence and type of steps, and the restraints on minimum and maximum allowed efforts. Using data based on a real harvested population and considering a logistic growth model, we perform such a comparison study of pure and mixed policies in terms of profit, applicability, and other relevant properties. We end up answering the question: is the optimal enemy of the good?
随机微分方程模型的收获优化:最优是好的敌人吗?
摘要我们可以使用随机微分方程来描述在随机变化的环境中收获种群的大小演化。之前,我们比较了四种收割策略的利润表现:(i)基于可变努力的最优可变努力策略;(ii)最优惩罚可变努力策略,基于在努力上包括人工运行能量成本的惩罚版本;(iii)阶梯式政策,阶梯式政策是在每年年初(或每两年期)确定收割工作量,并在当年(或两年期)保持不变;(iv)基于持续努力的持续收获努力可持续政策。它们具有不同的性质,因此也值得研究这些政策的组合,并研究处罚金额、步骤的存在和类型以及对允许的最小和最大努力的限制的单一和交叉影响。使用基于实际收获人口的数据,并考虑逻辑增长模型,我们对纯政策和混合政策在利润、适用性和其他相关性质方面进行了比较研究。我们最终回答了一个问题:善的最佳敌人是什么?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Models
Stochastic Models 数学-统计学与概率论
CiteScore
1.30
自引率
14.30%
发文量
42
审稿时长
>12 weeks
期刊介绍: Stochastic Models publishes papers discussing the theory and applications of probability as they arise in the modeling of phenomena in the natural sciences, social sciences and technology. It presents novel contributions to mathematical theory, using structural, analytical, algorithmic or experimental approaches. In an interdisciplinary context, it discusses practical applications of stochastic models to diverse areas such as biology, computer science, telecommunications modeling, inventories and dams, reliability, storage, queueing theory, mathematical finance and operations research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信