{"title":"Harvesting optimization with stochastic differential equations models: is the optimal enemy of the good?","authors":"N. Brites, C. Braumann","doi":"10.1080/15326349.2021.2006066","DOIUrl":null,"url":null,"abstract":"Abstract We can describe the size evolution of a harvested population in a randomly varying environment using stochastic differential equations. Previously, we have compared the profit performance of four harvesting policies: (i) optimal variable effort policy, based on variable effort; (ii) optimal penalized variable effort policies, penalized versions based on including an artificial running energy cost on the effort; (iii) stepwise policies, staircase versions where the harvesting effort is determined at the beginning of each year (or of each biennium) and kept constant throughout that year (or biennium); (iv) constant harvesting effort sustainable policy, based on constant effort. They have different properties, so it is also worth looking at combinations of such policies and studying the single and cross-effects of the amount of penalization, the absence or presence and type of steps, and the restraints on minimum and maximum allowed efforts. Using data based on a real harvested population and considering a logistic growth model, we perform such a comparison study of pure and mixed policies in terms of profit, applicability, and other relevant properties. We end up answering the question: is the optimal enemy of the good?","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/15326349.2021.2006066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract We can describe the size evolution of a harvested population in a randomly varying environment using stochastic differential equations. Previously, we have compared the profit performance of four harvesting policies: (i) optimal variable effort policy, based on variable effort; (ii) optimal penalized variable effort policies, penalized versions based on including an artificial running energy cost on the effort; (iii) stepwise policies, staircase versions where the harvesting effort is determined at the beginning of each year (or of each biennium) and kept constant throughout that year (or biennium); (iv) constant harvesting effort sustainable policy, based on constant effort. They have different properties, so it is also worth looking at combinations of such policies and studying the single and cross-effects of the amount of penalization, the absence or presence and type of steps, and the restraints on minimum and maximum allowed efforts. Using data based on a real harvested population and considering a logistic growth model, we perform such a comparison study of pure and mixed policies in terms of profit, applicability, and other relevant properties. We end up answering the question: is the optimal enemy of the good?