Automated Semantic Segmentation for Autonomous Railway Vehicles

IF 0.7 Q3 ENGINEERING, MULTIDISCIPLINARY
Oğuzhan Katar, E. Duman
{"title":"Automated Semantic Segmentation for Autonomous Railway Vehicles","authors":"Oğuzhan Katar, E. Duman","doi":"10.31803/tg-20220329114254","DOIUrl":null,"url":null,"abstract":"With the development of computer vision methods, the number of areas where autonomous systems are used has also increased. Among these areas is the transportation sector. Autonomous systems in the transportation sector are mostly developed for road vehicles, but highway rules and standards different between countries. In this study, models capable of semantic segmentation have been developed for autonomous railway vehicles with the help of the public dataset. Four different U-Net models were trained with 8500 images for four different scenarios. The model trained for binary semantic segmentation reached mean Intersection over Union (mIoU) value of 89.1%, while the models trained for multi-class semantic segmentation reached 83.2% mIoU, 79.7% mIoU and 29.6% mIoU. Information about the inclusion of high-resolution images in model training and performance metrics in semantic segmentation studies shared.","PeriodicalId":43419,"journal":{"name":"TEHNICKI GLASNIK-TECHNICAL JOURNAL","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEHNICKI GLASNIK-TECHNICAL JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31803/tg-20220329114254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

With the development of computer vision methods, the number of areas where autonomous systems are used has also increased. Among these areas is the transportation sector. Autonomous systems in the transportation sector are mostly developed for road vehicles, but highway rules and standards different between countries. In this study, models capable of semantic segmentation have been developed for autonomous railway vehicles with the help of the public dataset. Four different U-Net models were trained with 8500 images for four different scenarios. The model trained for binary semantic segmentation reached mean Intersection over Union (mIoU) value of 89.1%, while the models trained for multi-class semantic segmentation reached 83.2% mIoU, 79.7% mIoU and 29.6% mIoU. Information about the inclusion of high-resolution images in model training and performance metrics in semantic segmentation studies shared.
自动轨道车辆语义自动分割
随着计算机视觉方法的发展,使用自主系统的地区也在增加。其中包括运输部门。交通部门的自动驾驶系统大多是为公路车辆开发的,但各国的公路规则和标准不同。在这项研究中,借助公共数据集,为自动驾驶铁路车辆开发了能够进行语义分割的模型。针对四种不同的场景,用8500张图像训练了四个不同的U-Net模型。针对二元语义分割训练的模型达到了89.1%的平均联合交集(mIoU)值,而针对多类语义分割训练模型达到了83.2%mIoU、79.7%mIoU和29.6%mIoU。共享关于在模型训练中包含高分辨率图像和语义分割研究中的性能指标的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
TEHNICKI GLASNIK-TECHNICAL JOURNAL
TEHNICKI GLASNIK-TECHNICAL JOURNAL ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.50
自引率
8.30%
发文量
85
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信