Christian Pramudita, Bernard O. Iskandar, Wiena Widyastuti, Didi N. Santosa
{"title":"Efficacies of mineral trioxide aggregate and bioceramic root canal sealer with two types of gutta-percha toward the apical leakage","authors":"Christian Pramudita, Bernard O. Iskandar, Wiena Widyastuti, Didi N. Santosa","doi":"10.4103/SDJ.SDJ_41_19","DOIUrl":null,"url":null,"abstract":"Background: Mineral trioxide aggregate (MTA) is the most widely used material in endodontics, and recently, it has been used as an endodontic sealer. Bioceramic (BC) is a newly developed material based on calcium silicate, which is already used as a biocompatible root canal obturation material to overcome the weakness of MTA. However, there have been no studies comparing the materials used to seal the root canal. Objective: This study aimed to determine the apical leakage differences between BC and MTA sealers with BC-coated gutta-percha (GP) and conventional GP. Methods: In total, 40 mandibular premolars were cut coronally to 14 mm of working length. All samples were randomized and sorted into four groups: BC sealer with BC-coated GP, bioceramic sealer with conventional GP, MTA sealer with BC-coated GP, and MTA sealer with conventional GP. The samples were stored in an incubator, and nail varnish was applied to all root surfaces except for a 1 mm area from the apex. The samples were also soaked in methylene blue for 72 h before undergoing diaphanization. A stereomicroscope was used to measure the methylene blue penetration. All data were analyzed using analysis of variance. Results: There were significant differences in apical leakage between the BC and MTA sealers (P < 0.05). Conclusion: The BC sealer prevented apical leakage better than MTA. The BC-coated GP had better results than the conventional GP, but the differences were not significant, indicating that the choice of sealer is more important in preventing the apical leakage.","PeriodicalId":32049,"journal":{"name":"Scientific Dental Journal","volume":"4 1","pages":"11 - 15"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Dental Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/SDJ.SDJ_41_19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Mineral trioxide aggregate (MTA) is the most widely used material in endodontics, and recently, it has been used as an endodontic sealer. Bioceramic (BC) is a newly developed material based on calcium silicate, which is already used as a biocompatible root canal obturation material to overcome the weakness of MTA. However, there have been no studies comparing the materials used to seal the root canal. Objective: This study aimed to determine the apical leakage differences between BC and MTA sealers with BC-coated gutta-percha (GP) and conventional GP. Methods: In total, 40 mandibular premolars were cut coronally to 14 mm of working length. All samples were randomized and sorted into four groups: BC sealer with BC-coated GP, bioceramic sealer with conventional GP, MTA sealer with BC-coated GP, and MTA sealer with conventional GP. The samples were stored in an incubator, and nail varnish was applied to all root surfaces except for a 1 mm area from the apex. The samples were also soaked in methylene blue for 72 h before undergoing diaphanization. A stereomicroscope was used to measure the methylene blue penetration. All data were analyzed using analysis of variance. Results: There were significant differences in apical leakage between the BC and MTA sealers (P < 0.05). Conclusion: The BC sealer prevented apical leakage better than MTA. The BC-coated GP had better results than the conventional GP, but the differences were not significant, indicating that the choice of sealer is more important in preventing the apical leakage.